Advertisement

EEG marker of inhibitory brain activity correlates with resting-state cerebral blood flow in the reward system in major depression

  • A. Cantisani
  • T. Koenig
  • K. Stegmayer
  • A. Federspiel
  • H. Horn
  • T. J. Müller
  • R. Wiest
  • W. Strik
  • S. Walther
Original Paper

Abstract

Frontal alpha band asymmetry (FAA) is a marker of altered reward processing in major depressive disorder (MDD), associated with reduced approach behavior and withdrawal. However, its association with brain metabolism remains unclear. The aim of this study was to investigate FAA and its correlation with resting-state cerebral blood flow (rCBF). We hypothesized an association of FAA with regional rCBF in brain regions relevant to reward processing and motivated behavior, such as the striatum. We enrolled 20 patients and 19 healthy subjects. FAA scores and rCBF were quantified with the use of EEG and arterial spin labeling. Correlations of the two were evaluated, as well as the association with FAA and psychometric assessments of motivated behavior and anhedonia. Patients showed a left-lateralized pattern of frontal alpha activity and a correlation of FAA lateralization with subscores of Hamilton Depression Rating Scale linked to motivated behavior. An association of rCBF and FAA scores was found in clusters in the dorsolateral prefrontal cortex bilaterally (patients), in the left medial frontal gyrus, in the right caudate head and in the right inferior parietal lobule (whole group). No correlations were found in healthy controls. Higher inhibitory right-lateralized alpha power was associated with lower rCBF values in prefrontal and striatal regions, predominantly in the right hemisphere, which are involved in the processing of motivated behavior and reward. Inhibitory brain activity in the reward system may contribute to some of the motivational problems observed in MDD.

Keywords

Major depression Arterial spin labeling Reward processing Approach motivation EEG Frontal alpha asymmetry 

Notes

Acknowledgments

The authors would like to thank Dr. Kay Jann for the discussion of methods. In addition, Dr. Jann provided the MATLAB toolbox to calculate rCBF from ASL data.

Compliance with ethical standards

Ethical standards

The study protocol was approved by the local ethics committee and was in accordance with the 1964 Declaration of Helsinki.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Bromet E, Andrade LH, Hwang I et al (2011) Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9:90CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Üstün TB, Ayuso-Mateos JL, Chatterji S et al (2004) Global burden of depressive disorders in the year 2000. Br J Psychiatry 184:386–392CrossRefPubMedGoogle Scholar
  3. 3.
    Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gong Q, He Y (2014) Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry 77:223–235CrossRefPubMedGoogle Scholar
  5. 5.
    Gollan JK, Hoxha D, Chihade D et al (2014) Frontal alpha EEG asymmetry before and after behavioral activation treatment for depression. Biol Psychol 99:198–208CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stewart JL, Bismark AW, Towers DN et al (2010) Resting frontal EEG asymmetry as an endophenotype for depression risk: sex-specific patterns of frontal brain asymmetry. J Abnorm Psychol 119:502–512CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Thibodeau R, Jorgensen RA, Kim S (2006) Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. J Abnorm Psychol 115:715–729CrossRefPubMedGoogle Scholar
  8. 8.
    Henriques JB, Davidson RJ (1990) Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. J Abnorm Psychol 99:22–31CrossRefPubMedGoogle Scholar
  9. 9.
    Sutton SK, Davidson RJ (1997) Prefrontal brain asymmetry: a biological substrate of the behavioral approach and inhibition systems. Psychol Sci 8:204–210CrossRefGoogle Scholar
  10. 10.
    Davidson RJ (1998) Affective style and affective disorders: perspectives from affective neuroscience. Cognit Emot 12:307–330CrossRefGoogle Scholar
  11. 11.
    Anokhin AP, Heath AC, Myers E (2006) Genetic and environmental influences on frontal EEG asymmetry: a twin study. Biol Psychol 71:289–295CrossRefPubMedGoogle Scholar
  12. 12.
    Coan JA, Allen JJB (2004) Frontal EEG asymmetry as a moderator and mediator of emotion. Biol Psychol 67:7–49CrossRefPubMedGoogle Scholar
  13. 13.
    Carvalho A, Moraes H, Silveira H et al (2011) EEG frontal asymmetry in the depressed and remitted elderly: is it related to the trait or to the state of depression? J Affect Disord 129:143–148CrossRefPubMedGoogle Scholar
  14. 14.
    Gold C, Fachner J, Erkkilä J (2013) Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depression. Scand J Psychol 54:118–126CrossRefPubMedGoogle Scholar
  15. 15.
    Reid SA, Duke LM, Allen JJ (1998) Resting frontal electro—encephalographic asymmetry in depression: inconsistencies suggest the need to identify mediating factors. Psychophysiology 35:389–404CrossRefPubMedGoogle Scholar
  16. 16.
    Olbrich S, Arns M (2013) EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. Int Rev Psychiatry 25:604–618CrossRefPubMedGoogle Scholar
  17. 17.
    Jesulola E, Sharpley CF, Bitsika V et al (2015) Frontal alpha asymmetry as a pathway to behavioural withdrawal in depression: research findings and issues. Behav Brain Res 292:56–67CrossRefPubMedGoogle Scholar
  18. 18.
    Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249CrossRefPubMedGoogle Scholar
  19. 19.
    Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30:150–158CrossRefPubMedGoogle Scholar
  20. 20.
    Fahn S, Elton RL, Members UP (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB (eds) Recent developments in Parkinson’s disease. Macmillan Healthcare Information, Florham ParkGoogle Scholar
  21. 21.
    Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Montgomery SA, Åsberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389CrossRefPubMedGoogle Scholar
  23. 23.
    Beck AT, Steer RA, Brown GK (1996) Beck depression inventory manual, 2nd edn. The Psychological Corporation, San AntonioGoogle Scholar
  24. 24.
    Buysse DJ, Reynolds CF III, Monk TH et al (1989) The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res 28:193–213CrossRefPubMedGoogle Scholar
  25. 25.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  26. 26.
    Cantisani A, Koenig T, Horn H et al Psychomotor retardation is linked to frontal alpha asymmetry in major depression. J Affect Disord (in press)Google Scholar
  27. 27.
    Walther S, Hugli S, Hofle O et al (2012) Frontal white matter integrity is related to psychomotor retardation in major depression. Neurobiol Dis 47:13–19CrossRefPubMedGoogle Scholar
  28. 28.
    Walther S, Hofle O, Federspiel A et al (2012) Neural correlates of disbalanced motor control in major depression. J Affect Disord 136:124–133CrossRefPubMedGoogle Scholar
  29. 29.
    Orosz A, Jann K, Federspiel A et al (2012) Reduced cerebral blood flow within the default-mode network and within total gray matter in major depression. Brain Connect 2:303–310CrossRefPubMedGoogle Scholar
  30. 30.
    Tran Y, Craig A, Boord P et al (2004) Using independent component analysis to remove artifact from electroencephalographic measured during stuttered speech. Med Biol Eng Comput 42:627–633CrossRefPubMedGoogle Scholar
  31. 31.
    Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. Neuroimage 21:757–767CrossRefPubMedGoogle Scholar
  32. 32.
    Wu WC, Fernández-Seara M, Detre JA et al (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020–1027CrossRefPubMedGoogle Scholar
  33. 33.
    Dai W, Garcia D, de Bazelaire C et al (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Federspiel A, Muller TJ, Horn H et al (2006) Comparison of spatial and temporal pattern for fMRI obtained with BOLD and arterial spin labeling. J Neural Transm 113(1403):1415Google Scholar
  35. 35.
    Jann K, Orosz A, Dierks T et al (2013) Quantification of network perfusion in ASL cerebral blood flow data with seed based and ICA approaches. Brain Topogr 26:569–580CrossRefPubMedGoogle Scholar
  36. 36.
    Walther S, Federspiel A, Horn H et al (2011) Resting state cerebral blood flow and objective motor activity reveal basal ganglia dysfunction in schizophrenia. Psychiatry Res Neuroimaging 192:117–124CrossRefPubMedGoogle Scholar
  37. 37.
    Pizzagalli DA, Jahn AL, Shea JP (2005) Toward an objective characterization of an anhedonic phenotype: a signal-detection approach. Biol Psychiatry 57:319–327CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stepens A, Stagg CJ, Platkajis A, Boudrias MH et al (2010) White matter abnormalities in methcathinone abusers with an extrapyramidal syndrome. Brain 133:3676–3684CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hagemann D, Naumann E, Thayer JF (2001) The quest for the EEG reference revisited: a glance from brain asymmetry research. Psychophysiology 38:847–857CrossRefPubMedGoogle Scholar
  40. 40.
    Stewart JL, Coan J, Towers DN et al (2014) Resting and task-elicited prefrontal EEG alpha asymmetry in depression: support for the capability model. Psychophysiology 51:446–455CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shackman AJ, McMenamin BW, Maxwell JS et al (2009) Right dorsolateral prefrontal cortical activity and behavioral inhibition. Psychol Sci 20:1500–1506CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pizzagalli D, Sherwood RJ, Henriques JB et al (2005) Frontal brain asymmetry and reward responsiveness. Psychol Sci 16:805–813CrossRefPubMedGoogle Scholar
  43. 43.
    Whitton AE, Treadway MT, Pizzagalli D (2015) Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry 28:7–12CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Christopoulos GI, Tobler PN, Bossaerts P et al (2009) Neural correlates of value, risk and risk aversion contributing to decision making under risk. J Neurosci 29:12574–12583CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fecteau S, Pascual-Leone A, Zald DH et al (2007) Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci 27:6212–6218CrossRefPubMedGoogle Scholar
  46. 46.
    Ochsner KN, Silvers JA, Buhle JT (2012) Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci 1251:E1–E24CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Arsalidou M, Duerden EG, Taylor MJ (2013) The centre of the brain: topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Hum Brain Mapp 34:3031–3054CrossRefPubMedGoogle Scholar
  48. 48.
    Phillips ML, Chase HW, Sheline YI et al (2015) Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry 172:124–138CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Di Martino A, Scheres A, Margulies DS et al (2008) Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex 18:2735–2747CrossRefPubMedGoogle Scholar
  50. 50.
    Diekhof EK, Falkai P, Gruber O (2008) Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain Res Rev 59:164–184CrossRefPubMedGoogle Scholar
  51. 51.
    Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27:8161–8165CrossRefPubMedGoogle Scholar
  52. 52.
    Wager TD, Phan KL, Liberzon I et al (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. Neuroimage 19:513–531CrossRefPubMedGoogle Scholar
  53. 53.
    Tomer R, Slagter HA, Christian BT et al (2014) Love to win or hate to lose? Asymmetry of dopamine D2 receptor binding predicts sensitivity to reward versus punishment. J Cogn Neurosci 26:1039–1048CrossRefPubMedGoogle Scholar
  54. 54.
    Treadway MT, Buckholtz JW, Cowan RL et al (2012) Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci 32:6170–6176CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Treadway MT, Zald DH (2013) Parsing anhedonia: translational models of reward-processing deficits in psychopathology. Curr Dir Psychol Sci 22:244–249CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Choi EY, Yeo BTT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108:2242–2263CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Robinson JL, Laird AR, Glahn DC et al (2012) The functional connectivity of the human caudate: an application of meta-analytic connectivity modeling with behavioral filtering. Neuroimage 60:117–129CrossRefPubMedGoogle Scholar
  59. 59.
    Tremblay L, Worbe Y, Thobois S et al (2015) Selective dysfunction of basal ganglia subterritories: from movement to behavioral disorders. Mov Disord. doi: 10.1002/mds.26199 PubMedGoogle Scholar
  60. 60.
    Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal. Trends Cogn Sci 15:85–93CrossRefPubMedGoogle Scholar
  61. 61.
    Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7:268–277CrossRefPubMedGoogle Scholar
  62. 62.
    Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gusnard DA, Akbudak E, Shulman GL et al (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98:4259–4264CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    d’Argembeau A, Collette F, der Linden Van et al (2005) Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage 25:616–624CrossRefPubMedGoogle Scholar
  65. 65.
    Sheline YI, Price JL, Yan Z et al (2010) Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 107:11020–11025CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Goldenberg G (2009) Apraxia and the parietal lobes. Neuropsychologia 47:1449–1459CrossRefPubMedGoogle Scholar
  67. 67.
    Desmurget M, Sirigu A (2012) Conscious motor intention emerges in the inferior parietal lobule. Curr Opin Neurobiol 22:1004–1011CrossRefPubMedGoogle Scholar
  68. 68.
    Berridge KC, Kringelbach ML (2015) Pleasure systems in the brain. Neuron 86:646–664CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Cléry-Melin ML, Schmidt L, Lafargue G et al (2011) Why don’t you try harder? An investigation of effort production in major depression. PLoS ONE 6:1–8CrossRefGoogle Scholar
  70. 70.
    Pizzagalli DA, Holmes AJ, Dillon DG et al (2009) Reduced caudate and nucleus accumbens response to rewards in unmedicated subjects with major depressive disorder. Am J Psychiatry 166:702–710CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Insel T, Cuthbert B, Garvey M et al (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167:748–751CrossRefPubMedGoogle Scholar
  72. 72.
    Dillon DG, Rosso IM, Pechtel P et al (2014) Peril and pleasure: an rdoc-inspired examination of threat responses and reward processing in anxiety and depression. Depress Anxiety 31:233–249CrossRefPubMedGoogle Scholar
  73. 73.
    Chen Y, Wan HI, O’Reardon JP et al (2011) Quantification of cerebral blood flow as biomarker of drug effect: arterial spin labeling phMRI after a single dose of oral citalopram. Clin Pharmacol Ther 89:251–258CrossRefPubMedGoogle Scholar
  74. 74.
    Dumont GJH, de Visser SJ, Cohen AF et al (2005) Biomarkers for the effects of selective serotonin reuptake inhibitors (SSRIs) in healthy subjects. Br J Clin Pharmacol 59:495–510CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Coan JA, Allen JJ (2003) Frontal EEG asymmetry and the behavioral activation and inhibition systems. Psychophysiology 40:106–114CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Cantisani
    • 1
    • 2
  • T. Koenig
    • 1
  • K. Stegmayer
    • 1
  • A. Federspiel
    • 1
  • H. Horn
    • 1
  • T. J. Müller
    • 1
  • R. Wiest
    • 3
  • W. Strik
    • 1
  • S. Walther
    • 1
  1. 1.Translational Research Center, University Hospital of PsychiatryUniversity BernBern 60Switzerland
  2. 2.NeuroFarBa Department, Neuroscience SectionUniversity of FlorenceFlorenceItaly
  3. 3.Department of Diagnostic and Interventional NeuroradiologyInselspital, University Hospital of BernBernSwitzerland

Personalised recommendations