Endurance training in patients with schizophrenia and healthy controls: differences and similarities

  • Katriona Keller-Varady
  • Alkomiet Hasan
  • Thomas Schneider-Axmann
  • Ursula Hillmer-Vogel
  • Björn Adomßent
  • Thomas Wobrock
  • Andrea Schmitt
  • Andree Niklas
  • Peter Falkai
  • Berend Malchow
Original Paper


The aims were to examine the feasibility of and adaptations to endurance training in persons diagnosed with schizophrenia and to address the question whether the principles and beneficial effects of endurance training established in the healthy population apply also to patients with schizophrenia. In this controlled interventional study, 22 patients with schizophrenia and 22 healthy controls performed a standardized aerobic endurance training on bicycle ergometers over 12 weeks. Another group of 21 patients with schizophrenia played table soccer. Endurance capacity was measured with incremental cycle ergometry before and after the intervention and 3 months later. A specific set of outcome parameters was defined. The training stimuli can be assumed to be similar in both endurance groups. Endurance capacity improved significantly in the endurance groups, but not in the table soccer group. Patients and healthy controls showed comparable adaptations to endurance training, as assessed by physical working capacity and maximal achieved power. Differences were found in changes of performance at a lactate concentration of 3 mmol/l. Endurance training was feasible and effective in both groups. The principles and types of training that are usually applied to healthy controls need to be verified in patients with schizophrenia. Nevertheless, patients benefited from endurance training in terms of improvement of endurance capacity and reduction in the baseline deficit in comparison with healthy controls. Therefore, endurance training should be implemented in future therapy programs. These programs need to pay special attention to the differences between patients with schizophrenia and healthy controls.


Adaptations Endurance Sports therapy Psychiatry Schizophrenia Exercise 



This study was supported by the Dorothea Schlözer Program at the University of Göttingen. We would like to express our sincere thanks to the family of Mrs. Ricarda Maucher for their generous financial support. We thank Jacquie Klesing, Board-certified Editor in the Life Sciences (ELS), for editing assistance with the manuscript and the Federal Ministry of Education and Research for the financial support of our research (01EE1407AE).

Compliance with ethical standards

Conflict of interest

K Keller-Varady, B. Malchow, T. Schneider-Axmann, U. Hillmer-Vogel, B. Adomßent and A. Niklas have no conflict of interest. A. Schmitt was an honorary speaker for TAD Pharma and Roche and has been a member of advisory boards for Roche. P. Falkai has been an honorary speaker for Janssen-Cilag, GE Healthcare, Otsuka, Servier, Takeda, Astra-Zeneca, Eli Lilly, Bristol-Myers-Squibb, Lundbeck, Pfizer, Bayer Vital, SmithKline Beecham, Wyeth and Essex. He was a member of the advisory boards of Janssen-Cilag, AstraZeneca, Eli Lilly, and Lundbeck. A. Hasan has been invited to scientific meetings by Lundbeck, Janssen-Cilag, and Pfizer has received a paid speakership from Desitin, Otsuka, and the Federal Union of German Associations of Pharmacists, and was member of the Roche Advisory Board. T. Wobrock has received paid speakerships from Alpine Biomed, AstraZeneca, Bristol-Myers-Squibb, Eli Lilly, I3G, Janssen-Cilag, Novartis, Lundbeck, Roche, Sanofi-Aventis, Otsuka, and Pfizer, has accepted travel or hospitality not related to a speaking engagement from AstraZeneca, Bristol-Myers-Squibb, Eli Lilly, Janssen-Cilag, and Sanofi-Synthelabo, has received research grants from AstraZeneca, Cerbomed, I3G, and AOK (health insurance company) and is a member of the advisory board of Janssen-Cilag.

Ethical standards

The study has been approved by the local ethics committee and has been performed in accordance with the Declaration of Helsinki. All participants gave their informed consent prior to their inclusion. No personal data are published.


  1. 1.
    Deutsches Institut für Medizinische Dokumentation und Information (2013) ICD-10-GM Version 2014. Systematisches Verzeichnis. Internationale statistische Klassifikation der Krankheiten und verwandter Gesundheitsprobleme, 10. Revision - German Modification (International Statistical Classification of Diseases and Related Health Problems)Google Scholar
  2. 2.
    Falkai P, Reich-Erkelenz D, Schmitt A (2014) Von der Pathophysiologie zur Entwicklung von Leitlinien und neuen Behandlungskonzepten der Schizophrenie (From pathophysiology to the development of guidelines and new therapeutic strategies in schizophrenia). Fortschr Neurol Psychiatr 82(4):186–190CrossRefPubMedGoogle Scholar
  3. 3.
    Garber CE, Blissmer B, Deschenes MR et al (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults. Med Sci Sports Exerc 43(7):1334–1359CrossRefPubMedGoogle Scholar
  4. 4.
    Wichniak A, Skowerska A, Chojnacka-Wójtowicz J et al (2011) Actigraphic monitoring of activity and rest in schizophrenic patients treated with olanzapine or risperidone. J Psychiatr Res 45(10):1381–1386CrossRefPubMedGoogle Scholar
  5. 5.
    Srihari VH, Phutane VH, Ozkan B et al (2013) Cardiovascular mortality in schizophrenia: defining a critical period for prevention. Schizophr Res 146:64–68CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    de Hert M, Correll CU, Bobes J et al (2011) Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry 10(1):52–77CrossRefGoogle Scholar
  7. 7.
    Stathopoulou G, Powers MB, Berry AC et al (2006) Exercise interventions for mental health: a quantitative and qualitative review. Clin Psychol Sci Pract 13:179–193CrossRefGoogle Scholar
  8. 8.
    Antonovsky A (1979) Health, stress, and coping. New perspectives on mental and physical well-being. Jossey-Bass, San FranciscoGoogle Scholar
  9. 9.
    Erickson KI, Voss MW, Prakash RS et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 108(7):3017–3022CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pajonk F, Wobrock T, Gruber O et al (2010) Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 67(2):133–143CrossRefPubMedGoogle Scholar
  11. 11.
    Malchow B, Keeser D, Keller K et al (2015) Effects of endurance training on brain structures in chronic schizophrenia patients and healthy controls. Schizophr Res. doi: 10.1016/j.schres.2015.01.005 PubMedGoogle Scholar
  12. 12.
    Josefsson T, Lindwall M, Archer T (2014) Physical exercise intervention in depressive disorders: meta-analysis and systematic review. Scand J Med Sci Sports 24:259–272CrossRefPubMedGoogle Scholar
  13. 13.
    Rosenbaum S, Tiedemann A, Sherrington C et al (2014) Physical activity interventions for people with mental illness: a systematic review and meta-analysis. J Clin Psychiatry 75(9):964–974CrossRefPubMedGoogle Scholar
  14. 14.
    Firth J, Cotter J, Elliott R et al (2015) A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med 45(7):1343–1361CrossRefPubMedGoogle Scholar
  15. 15.
    Malchow B, Reich-Erkelenz D, Oertel-Knochel V et al (2013) The effects of physical exercise in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263(6):451–467CrossRefPubMedGoogle Scholar
  16. 16.
    Deimel H, Lohmann S (1983) Zur körperlichen Leistungsfähigkeit von schizophren erkrankten Patienten (Physical capacity of schizophrenic patients). Rehabilitation 22:81–85PubMedGoogle Scholar
  17. 17.
    Nilsson BM, Olsson RM, Oman A et al (2012) Physical capacity, respiratory quotient and energy expenditure during exercise in male patients with schizophrenia compared with healthy controls. Eur Psychiatry 27(3):206–212CrossRefPubMedGoogle Scholar
  18. 18.
    Kerling A, Tegtbur U, Ziegenbein M et al (2013) Exercise capacity and quality of life in patients with schizophrenia. Psychiatr Q 84(4):417–427CrossRefPubMedGoogle Scholar
  19. 19.
    Ostermann S, Herbsleb M, Schulz S et al (2013) Exercise reveals the interrelation of physical fitness, inflammatory response, psychopathology, and autonomic function in patients with schizophrenia. Schizophr Bull 39(5):1139–1149CrossRefPubMedGoogle Scholar
  20. 20.
    Ozbulut O, Genc A, Bagcioglu E et al (2013) Evaluation of physical fitness parameters in patients with schizophrenia. Psychiatry Res 210(3):806–811CrossRefPubMedGoogle Scholar
  21. 21.
    Svatkova A, Mandl RCW, Scheewe TW et al (2015) Physical exercise keeps the brain connected: biking increases white matter integrity in patients with schizophrenia and healthy controls. Schizophr Bull 41(4):869–878CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vancampfort D, Rosenbaum S, Probst M et al (2015) Promotion of cardiorespiratory fitness in schizophrenia: a clinical overview and meta-analysis. Acta Psychiatr Scand 132(2):131–143CrossRefPubMedGoogle Scholar
  23. 23.
    Vancampfort D, Probst M, Sweers K et al (2011) Relationships between obesity, functional exercise capacity, physical activity participation and physical self-perception in people with schizophrenia. Acta Psychiatr Scand 123(6):423–430CrossRefPubMedGoogle Scholar
  24. 24.
    Scheewe TW, Takken T, Kahn RS et al (2012) Effects of exercise therapy on cardiorespiratory fitness in patients with schizophrenia. Med Sci Sports Exerc 44(10):1834–1842CrossRefPubMedGoogle Scholar
  25. 25.
    Taylor ED, Theim KR, Mirch MC et al (2006) orthopedic complications of overweight in children and adolescents. Pediatrics 117(6):2167–2174CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Heyn PC, Johnson KE, Kramer AF (2008) Endurance and strength training outcomes on cognitively impaired and cognitively intact older adults: a meta-analysis. J Nutr Health Aging 12(6):401–409CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kutzner I, Heinlein B, Graichen F et al (2012) Loading of the knee joint during ergometer cycling: telemetric in vivo data. J Orthop Sports Phys Ther 42(12):1032–1038CrossRefPubMedGoogle Scholar
  28. 28.
    Borg GAV, Noble BJ (1974) Perceived exertion. Exerc Sport Sci Rev 2:131–153CrossRefPubMedGoogle Scholar
  29. 29.
    Steinacker JM, Liu Y, Reißnecker S (2002) Abbruchkriterien bei der Ergometrie (Termination criteria in ergometry). Deutsche Zeitschrift für Sportmedizin 53(7+8):228–229Google Scholar
  30. 30.
    Midgley AW, McNaughton LR, Polman R et al (2007) Criteria for determination of maximal oxygen uptake. a brief critique and recommendations for future research. Sports Med 37(12):1019–1028CrossRefPubMedGoogle Scholar
  31. 31.
    Mann T, Lamberts RP, Lambert MI (2013) Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med 43:613–625CrossRefPubMedGoogle Scholar
  32. 32.
    Scharhag-Rosenberger F, Schommer K (2013) Die Spiroergometrie in der Sportmedizin (Exercise testing in sports medicine). Deutsche Zeitschrift für Sportmedizin 64(12):362–366Google Scholar
  33. 33.
    Robergs RA, Dwyer D, Astorino T (2010) Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Med 40(2):95–111CrossRefPubMedGoogle Scholar
  34. 34.
    Faul F, Erdfelder E, Lang A et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Brain Res 39(2):175–191Google Scholar
  35. 35.
    Simes RJ (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73(3):751–754CrossRefGoogle Scholar
  36. 36.
    Hommel G (1988) A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75(2):383–386CrossRefGoogle Scholar
  37. 37.
    Heggelund J, Nilsberg GE, Hoff J et al (2011) Effects of high aerobic intensity training in patients with schizophrenia—a controlled trial. Nord J Psychiatry 65(4):269–275CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Strassnig MT, Newcomer JW, Harvey PD (2012) Exercise improves physical capacity in obese patients with schizophrenia: pilot study. Schizophr Res 141(2–3):284–285CrossRefPubMedGoogle Scholar
  39. 39.
    Abdel-Baki A, Brazzini-Poisson V, Marois F et al (2013) Effects of aerobic interval training on metabolic complications and cardiorespiratory fitness in young adults with psychotic disorders: a pilot study. Schizophr Res 149(1–3):112–115CrossRefPubMedGoogle Scholar
  40. 40.
    Bredin S, Warburton D, Lang D (2013) The health benefits and challenges of exercise training in persons living with schizophrenia: a pilot study. Brain Sci 3(2):821–848CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim H, Song B, So B et al (2014) Increase of circulating BDNF levels and its relation to improvement of physical fitness following 12 weeks of combined exercise in chronic patients with schizophrenia: a pilot study. Psychiatry Res 220(3):792–796CrossRefPubMedGoogle Scholar
  42. 42.
    Kimhy D, Vakhrusheva J, Bartels MN et al (2015) The impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia: a single-blind. Randomized clinical trial. Schizophr Bull 41(4):859–868CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Leone M, Lalande D, Thériault L et al (2015) Impact of an exercise program on the physiologic, biologic and psychologic profiles in patients with schizophrenia. Schizophr Res 164(1–3):270–272CrossRefPubMedGoogle Scholar
  44. 44.
    Rosenbaum S, Lagopoulos J, Curtis J et al (2015) Aerobic exercise intervention in young people with schizophrenia spectrum disorders; improved fitness with no change in hippocampal volume. Psychiatry Res. doi: 10.1016/j.pscychresns.2015.02.004 Google Scholar
  45. 45.
    Park Y, Jeong J, Lee H et al (2010) Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci USA 107(41):17785–17790CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Regenold WT, Phatak P, Marano CM et al (2009) Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry 65(6):489–494CrossRefPubMedGoogle Scholar
  47. 47.
    Park C, Park SK (2012) Molecular links between mitochondrial dysfunctions and schizophrenia. Mol Cells 33(2):105–110CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hottenrott K, Neumann G (2014) Trainingswissenschaft. Ein Lehrbuch in 14 Lektionen (Training science: a textbook with 14 lessons), 2nd edn. Meyer & Meyer Verlag, AachenGoogle Scholar
  49. 49.
    Beebe LH, Smith KD, Roman MW et al (2013) A pilot study describing physical activity in persons with schizophrenia spectrum disorders (SSDS) after an exercise program. Issues Ment Health Nurs 34(4):214–219CrossRefPubMedGoogle Scholar
  50. 50.
    Bernard P, Romain AJ, Esseul E et al (2013) Barrières et motivation à l’activité physique chez l’adulte atteint de schizophrénie. Revue de littérature systématique (A systematic review of barriers to physical activity and motivation for adults with schizophrenia). Sci Sports 28(5):247–252CrossRefGoogle Scholar
  51. 51.
    Soundy A, Stubbs B, Probst M et al (2014) Barriers to and facilitators of physical activity among persons with schizophrenia: a survey of physical therapists. Psychiatr Serv 65(5):693–696CrossRefPubMedGoogle Scholar
  52. 52.
    Vancampfort D, de Hert M, Stubbs B et al (2015) Negative symptoms are associated with lower autonomous motivation towards physical activity in people with schizophrenia. Compr Psychiatry 56:128–132CrossRefPubMedGoogle Scholar
  53. 53.
    Hasnain M, Victor W, Vieweg R (2011) Do we truly appreciate how difficult it is for patients with schizophrenia to adapt a healthy lifestyle? Acta Psychiatr Scand 123:409–410CrossRefPubMedGoogle Scholar
  54. 54.
    Marzolini S, Jensen B, Melville P (2009) Feasibility and effects of a group-based resistance and aerobic exercise program for individuals with severe schizophrenia: a multidisciplinary approach. Mental Health Phys Act 2:29–36CrossRefGoogle Scholar
  55. 55.
    Dodd KJ, Duffy S, Stewart JA et al (2011) A small group aerobic exercise programme that reduces body weight is feasible in adults with severe chronic schizophrenia: a pilot study. Disabil Rehabil 33(13–14):1222–1229CrossRefPubMedGoogle Scholar
  56. 56.
    Scharhag-Rosenberger F, Meyer T, Gäßler N et al (2010) Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. J Sci Med Sport 13(1):74–79CrossRefPubMedGoogle Scholar
  57. 57.
    Stubbs B, Probst M, Soundy A et al (2014) Physiotherapists can help implement physical activity programmes in clinical practice. Br J Psychiatry 204(2):164PubMedGoogle Scholar
  58. 58.
    Herbsleb M, Mühlhaus T, Bär K (2014) Differential cardiac effects of aerobic interval training versus moderate continuous training in a patient with schizophrenia: a case report. Front Psychiatry 5:119CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Oertel-Knöchel V, Mehler P, Thiel C et al (2014) Effects of aerobic exercise on cognitive performance and individual psychopathology in depressive and schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 264:589–604CrossRefPubMedGoogle Scholar
  60. 60.
    Chen EYH, Lin X, Lam MML et al (2012) The impacts of yoga and aerobic exercise on neuro-cognition and brain structure in early psychosis—a preliminary analysis of the randomized controlled clinical trial. Schizophr Res 136:S56CrossRefGoogle Scholar
  61. 61.
    Malchow B, Keller K, Hasan A et al (2015) Effects of endurance training combined with cognitive remediation on everyday functioning, symptoms and cognition in multi-episode schizophrenia patients. Schizophr Bull. doi: 10.1093/schbul/sbv020 PubMedCentralGoogle Scholar
  62. 62.
    Falkai P, Malchow B, Wobrock T et al (2013) The effect of aerobic exercise on cortical architecture in patients with chronic schizophrenia: a randomized controlled MRI study. Eur Arch Psychiatry Clin Neurosci 263(6):469–473CrossRefPubMedGoogle Scholar
  63. 63.
    Scheewe TW, van Haren NEM, Sarkisyan G et al (2013) Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls. Eur Neuropsychopharmacol 23(7):675–685CrossRefPubMedGoogle Scholar
  64. 64.
    Katch VL, Sady SS, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14(1):21–25CrossRefPubMedGoogle Scholar
  65. 65.
    Bagger M, Petersen PH, Pedersen PK (2003) Biological variation in variables associated with exercise training. Int J Sports Med 24:433–440CrossRefPubMedGoogle Scholar
  66. 66.
    Pfitzinger P, Freedson PS (1998) The reliability of lactate measurements during exercise. Int J Sports Med 19:349–357CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Katriona Keller-Varady
    • 1
  • Alkomiet Hasan
    • 1
  • Thomas Schneider-Axmann
    • 1
  • Ursula Hillmer-Vogel
    • 2
  • Björn Adomßent
    • 2
  • Thomas Wobrock
    • 3
    • 4
  • Andrea Schmitt
    • 1
    • 5
  • Andree Niklas
    • 2
  • Peter Falkai
    • 1
  • Berend Malchow
    • 1
  1. 1.Department of Psychiatry and PsychotherapyLudwig-Maximilians-UniversityMunichGermany
  2. 2.Department of Sports MedicineUniversity Medical Center GöttingenGöttingenGermany
  3. 3.Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
  4. 4.Centre of Mental HealthCounty Hospitals Darmstadt-DieburgGroß-UmstadtGermany
  5. 5.Laboratory of Neuroscience (LIM27), Institute of PsychiatryUniversity of Sao PauloSao PauloBrazil

Personalised recommendations