Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains

  • Verônica M. Saia-Cereda
  • Juliana S. Cassoli
  • Andrea Schmitt
  • Peter Falkai
  • Juliana M. Nascimento
  • Daniel Martins-de-SouzaEmail author
Original Paper


Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1 % of the world population. Morphological, electrophysiological, and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from nine schizophrenia patients and seven controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC–MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increased significantly the knowledge derived from an earlier proteomic study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and tubulins; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein and myelin–oligodendrocyte glycoprotein. Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies.


Proteome Mass spectrometry Proteomics Schizophrenia Corpus callosum Postmortem brain 



The authors thank Prof. Sabine Bahn (University of Cambridge, UK) for providing access to IPA, and Jacquie Klesing, Board-certified Editor in the Life Sciences (ELS), for editing assistance with the manuscript. D.M.S., J.S.C. and J.M.N. are funded by FAPESP (São Paulo Research Foundation, Grants 2013/08711-3, 2014/10068-4, 2014/21035-0 and 2014/14881-1) and CNPq (The Brazilian National Council for Scientific and Technological Development, Grant 460289/2014-4).

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.


  1. 1.
    Freedman R (2003) Schizophrenia. N Engl J Med 349(18):1738–1749CrossRefPubMedGoogle Scholar
  2. 2.
    Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192CrossRefPubMedGoogle Scholar
  3. 3.
    Hegarty JD, Baldessarini RJ, Tohen M, Waternaux C, Oepen G (1994) One hundred years of schizophrenia: a meta-analysis of the outcome literature. Am J Psychiatry 151(10):1409–1416CrossRefPubMedGoogle Scholar
  4. 4.
    Weickert TW, Goldberg TE, Gold JM, Bigelow LB, Egan MF, Weinberger DR (2000) Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 57(9):907–913CrossRefPubMedGoogle Scholar
  5. 5.
    Fitsiori A, Nguyen D, Karentzos A, Delavelle J, Vargas MI (2011) The corpus callosum: white matter or terra incognita. Br J Radiol 84:5–18PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Guo H, Christoff JM, Campos VE, Li Y (2000) Normal corpus callosum in Emx1 mutant mice with C57BL/6 background. Biochem Biophys Res Commun 276(2):649–653CrossRefPubMedGoogle Scholar
  7. 7.
    Rotarska-Jagiela A, Schönmeyer R, Oertel V, Haenschel C, Vogeley K, Linden DEJ (2008) The corpus callosum in schizophrenia—volume and connectivity changes affect specific regions. NeuroImage 39:1522–1532CrossRefPubMedGoogle Scholar
  8. 8.
    Innocenti GM, Ansermet F, Parnas J (2003) Schizophrenia, neurodevelopment and corpus callosum. Mol Psychiatry 8:261–274CrossRefPubMedGoogle Scholar
  9. 9.
    Martins-De-Souza D (2012) Proteomics tackling schizophrenia as a pathway disorder. Schizophr Bull 38(6):1107–1108PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Martins-de-Souza D (2010) Proteome and transcriptome analysis suggests oligodendrocyte dysfunction in schizophrenia. J Psychiatr Res 44(3):149–156. doi: 10.1016/j.jpsychires.2009.07 CrossRefPubMedGoogle Scholar
  11. 11.
    Horvth S, Janka Z, Mirnics K (2011) Analyzing schizophrenia by DNA microarrays. Biol Psychiatry 69(2):157–162. doi: 10.1016/j.biopsych.2010.07.017 CrossRefGoogle Scholar
  12. 12.
    Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. Npj Schizophrenia 1:14003CrossRefGoogle Scholar
  13. 13.
    Rockstroh M, Müller SA, Jende C, Kerzhner A, von Bergen M, Tomm JM (2011) Cell fractionation—an important tool for compartment proteomics. OMICS 1:135–143Google Scholar
  14. 14.
    Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW, Dias-Neto E (2009) Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation. BMC Psychiatry 9:17PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Nogueira FCS, Domont GD (2014) Survey of shotgun proteomics. Shotgun proteomics. Springer, New York, pp 3–23CrossRefGoogle Scholar
  16. 16.
    Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteomics 104:140–150CrossRefPubMedGoogle Scholar
  17. 17.
    Jahn T, Mussgay L (1989) Die statistische Kontrolle moeglicher Medikamenteneinfluesse in experimentalpsychologischen Schizophrenie studien: Ein Vorschlag zur Berechnung von Chlorpromazina aequivalenten. Z Klin Psychol Psychother 18:10Google Scholar
  18. 18.
    Meltzer HY, Fatemi SH (1998) Treatment of schizophrenia. In: Schatzberg AF, Nemeroff CB (eds) The American psychiatric text book of psychopharmacology. American Psychiatric Press, Washington, pp 127–135 10 Google Scholar
  19. 19.
    Cox B, Emili A (2006) Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat Protoc 1(4):1872–1878. doi: 10.1038/nprot.2006.273 CrossRefPubMedGoogle Scholar
  20. 20.
    Maccarrone G, Rewerts C, Lebar M, Turck CW, Martins-de- Souza D (2013) Proteome profiling of peripheral mononuclear cells from human blood. Proteomics 13:893–897CrossRefPubMedGoogle Scholar
  21. 21.
    Oliva Daniele et al (1991) Complete structure of the human gene encoding neuron-specific enolase. Genomics 10(1):157–165CrossRefPubMedGoogle Scholar
  22. 22.
    Martins-de-Souza D, Harris LW, Guest PC, Bahn S (2011) The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal 15(7):2067–2079. doi: 10.1089/ars.2010.3459 CrossRefPubMedGoogle Scholar
  23. 23.
    Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, Turck CW (2010) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 44(16):1176–1189CrossRefPubMedGoogle Scholar
  24. 24.
    Ishtiaq M, Campos-Melo D, Volkening K, Strong MJ (2014) Analysis of novel NEFL mRNA targeting microRNAs in amyotrophic lateral sclerosis. PLoS One 9(1):e85653. doi: 10.1371/journal.pone.0085653 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Sivagnanasundaram S, Crossett B, Dedova I, Cordwell S, Matsumoto I (2007) Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin Appl 1:1291–1305CrossRefPubMedGoogle Scholar
  26. 26.
    Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Dopamine receptor-interacting proteins: the Ca2+ connection in dopamine signaling. Trends Pharmacol Sci 24:486–492CrossRefPubMedGoogle Scholar
  27. 27.
    Kapitein LC, Hoogenraad CC (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 46(1):9–20CrossRefPubMedGoogle Scholar
  28. 28.
    Berg D, Holzmann C, Riess O (2003) 14-3-3 proteins in the nervous system. Nat Rev Neurosci 4(September):752–762CrossRefPubMedGoogle Scholar
  29. 29.
    Muratake T, Hayashi S, Ichikawa T, Kumanishi T, Ichimura Y, Kuwano R, Takahashi Y (1996) Structural organization and chromosomal assignment of the human 14-3-3 eta chain gene (YWHAH). Genomics 36:63–69CrossRefPubMedGoogle Scholar
  30. 30.
    Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Lowry SF (2005) A network-based analysis of systemic inflammation in humans. Nature 437(October):1032–1037CrossRefPubMedGoogle Scholar
  31. 31.
    Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, Dias-Neto E (2009) Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 43(11):978–986CrossRefPubMedGoogle Scholar
  32. 32.
    Martins-de-Souza D, Guest PC, Rahmoune H, Bahn S (2012) Proteomic approaches to unravel the complexity of schizophrenia. Expert Rev Proteomics 9(1):97–108CrossRefPubMedGoogle Scholar
  33. 33.
    Bell R, Munro J, Russ C, Powell JF, Bruinvels A, Kerwin RW, Collier DA (2000) Systematic screening of the 14-3-3 eta (eta) chain gene for polymorphic variants and case-control analysis in schizophrenia. Am J Med Genet 96:736–743CrossRefPubMedGoogle Scholar
  34. 34.
    Wong AHC, Likhodi O, Trakalo J, Yusuf M, Sinha A, Pato CN, Kennedy JL (2005) Genetic and post-mortem mRNA analysis of the 14-3-3 genes that encode phosphoserine/threonine-binding regulatory proteins in schizophrenia and bipolar disorder. Schizophr Res 78:137–146CrossRefPubMedGoogle Scholar
  35. 35.
    Ikeda M, Hikita T, Taya S, Uraguchi-asaki J, Toyo-Oka K, Wynshaw-boris A, Iwata N (2008) Identification of YWHAE, a gene encoding 14-3-3 epsilon, as a possible susceptibility gene for schizophrenia. Hum Mol Genet 17(20):3212–3222CrossRefPubMedGoogle Scholar
  36. 36.
    Foote M, Qiao H, Graham K, Wu Y, Zhou Y (2015) Inhibition of 14-3-3 proteins leads to schizophrenia-related behavioral phenotypes and synaptic defects in mice. Biol Psychiatry 1–10. doi: 10.1016/j.biopsych.2015.02.015
  37. 37.
    Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66(1):511–548CrossRefPubMedGoogle Scholar
  38. 38.
    Schubert KO, Föcking M, Prehn JHM, Cotter DR (2012) Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 17(7):669–681. doi: 10.1038/mp.2011.123 CrossRefPubMedGoogle Scholar
  39. 39.
    Martins-De-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC, Dias-Neto E (2009) Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm 116:275–289CrossRefPubMedGoogle Scholar
  40. 40.
    Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98(8):4746–4751PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362(9386):798–805CrossRefPubMedGoogle Scholar
  42. 42.
    Foong J, Maier M, Barker GJ, Brocklehurst S, Miller DH, Ron MA (2000) In vivo investigation of white matter pathology in schizophrenia with magnetization transfer imaging. J Neurol Neurosurg Psychiatry 68:70–74PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55(5):597–610CrossRefPubMedGoogle Scholar
  44. 44.
    Konrad A, Winterer G (2008) Disturbed structural connectivity in schizophrenia—primary factor in pathology or epiphenomenon? Schizophr Bull 34(1):72–92. doi: 10.1093/schbul/sbm034 PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Bartzokis G (2002) Schizophrenia: breakdown in the well- regulated lifelong process of brain development and maturation. Neuropsychopharmacology 27(4):672–683CrossRefPubMedGoogle Scholar
  46. 46.
    Chew LJ, Fusar-Poli P, Schmitz T (2013) Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 35(2–3):102–129. doi: 10.1159/000346157 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Moehle MS, Luduena RF, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2012) Regional differences in expression of β-tubulin isoforms in schizophrenia. Schizophr Res 135(1):181–186PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Denarier E, Aguezzoul M, Jolly C, Vourc’h C, Roure A, Andrieux A et al (1998) Genomic structure and chromosomal mapping of the mouse STOP gene (Mtap6). Biochem Biophys Res Commun 243:791–796CrossRefPubMedGoogle Scholar
  49. 49.
    Xi ZR, Qin W, Yang YF, He G, Gao SH, Ren MS, He L (2004) Transmission disequilibrium analysis of the GSN gene in a cohort of family trios with schizophrenia. Neurosci Lett 372(3):200–203. doi: 10.1016/j.neulet.2004.09.041 CrossRefPubMedGoogle Scholar
  50. 50.
    Sun HQ, Yamamoto M, Mejillano M, Yin HL (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274(47):33179–33182. doi: 10.1074/jbc.274.47.33179 CrossRefPubMedGoogle Scholar
  51. 51.
    Prabakaran S, Wengenroth M, Lockstone HE, Lilley K, Leweke FM, Bahn S (2007) 2-D DIGE analysis of liver and red blood cells provides further evidence for oxidative stress in schizophrenia. J Proteome Res 6:141–149CrossRefPubMedGoogle Scholar
  52. 52.
    Funfschilling U, Supplie LM, Mahad D, Boretius S, Aiman S, Edgar J, Nave K (2013) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521. doi: 10.1038/nature11007 Google Scholar
  53. 53.
    Magistretti PJ (2011) Neuron-glia metabolic coupling and plasticity. Exp Physiol 96:407–410CrossRefPubMedGoogle Scholar
  54. 54.
    Reddy RD, Sahebarao MP, Mukherjee S, Murthy JN (1991) Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry 30:409–412CrossRefPubMedGoogle Scholar
  55. 55.
    Yao JK, Reddy RD, van Kammen DP (2001) Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15:287–310CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY (2003) Elevated blood superoxide dismutase in neuroleptic-free schizophrenia: association with positive symptoms. Psychiatry Res 117:85–88CrossRefPubMedGoogle Scholar
  57. 57.
    Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M (2015) Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Eurosci Biobehav Rev 48:10–21CrossRefGoogle Scholar
  58. 58.
    Föcking M, Lopez LM, English JA, Dicker P, Wolff A, Brindley E, Cotter DR (2014) Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psychiatry 20:424–432. doi: 10.1038/mp.2014.63 CrossRefPubMedGoogle Scholar
  59. 59.
    Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT-J, Griffin JL, Bahn S (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9(7):684–697CrossRefPubMedGoogle Scholar
  60. 60.
    Clark D, Dedova I, Cordwell S, Matsumoto I (2006) A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 11(5):459–470CrossRefPubMedGoogle Scholar
  61. 61.
    Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics 6(11):3414–3425CrossRefPubMedGoogle Scholar
  62. 62.
    Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, Cotter DR (2008) Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 13(12):1102–1117CrossRefPubMedGoogle Scholar
  63. 63.
    Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR (2009) Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 14(6):601–613CrossRefPubMedGoogle Scholar
  64. 64.
    Pennington K, Dicker P, Dunn MJ, Cotter DR (2008) Proteomic analysis reveals protein changes within layer 2 of the insular cortex in schizophrenia. Proteomics 8(23–24):5097–5107CrossRefPubMedGoogle Scholar
  65. 65.
    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259(3):151–163CrossRefGoogle Scholar
  66. 66.
    English JA, Dicker P, Föcking M, Dunn MJ, Cotter DR (2009) 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 9(12):3368–3382CrossRefPubMedGoogle Scholar
  67. 67.
    Schubert KO, Föcking M, Cotter DR (2015) Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res. doi: 10.1016/j.schres.2015.02.002
  68. 68.
    Föcking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR (2011) Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry 68(5):477–488CrossRefPubMedGoogle Scholar
  69. 69.
    Martins-de-Souza D, Schmitt A, Röder R, Lebar M, Schneider-Axmann T, Falkai P, Turck CW (2010) Sex-specific proteome differences in the anterior cingulate cortex of schizophrenia. J Psychiatr Res 44(14):989–991CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Verônica M. Saia-Cereda
    • 1
  • Juliana S. Cassoli
    • 1
  • Andrea Schmitt
    • 2
    • 3
  • Peter Falkai
    • 3
  • Juliana M. Nascimento
    • 1
    • 4
  • Daniel Martins-de-Souza
    • 1
    • 2
    • 5
    Email author
  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Laboratório de Neurociências (LIM-27), Instituto de PsiquiatriaUniversidade de São PauloSão PauloBrazil
  3. 3.Department of Psychiatry and PsychotherapyLudwig-Maximilians-University (LMU)MunichGermany
  4. 4.D’Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil
  5. 5.UNICAMP’s Neurobiology CenterCampinasBrazil

Personalised recommendations