Advertisement

CACNA1C risk variant is associated with increased amygdala volume

  • T. M. LancasterEmail author
  • S. Foley
  • K. E. Tansey
  • D. E. J. Linden
  • X. Caseras
Short Communication

Abstract

Genome-wide association studies suggest that genetic variation within L-type calcium channel subunits confer risk to psychosis. The single nucleotide polymorphism at rs1006737 in CACNA1C has been associated with both schizophrenia and bipolar disorder and with several intermediate phenotypes that may serve as neurobiological antecedents, linking psychosis to genetic aetiology. Amongst others, it has been implicated in alterations in amygdala structure and function. In the present study, we show that the risk allele (A) is associated with increased amygdala volume in healthy individuals (n = 258). This observation reinforces a hypothesis that genetic variation may confer risk to psychosis via alterations in limbic structures. Further study of CACNA1C using intermediate phenotypes for psychosis will determine the mechanisms by which variation in this gene confers risk.

Keywords

Bipolar CACNA1C Amygdala rs1006737 

Notes

Acknowledgements

This study was supported by the National Centre for Mental Health (NCMH) at Cardiff University, with funds from the National Institute for Social Care and Health Research (NISCHR), Welsh Government, Wales (Grant No. BR09) and by Grant MR/K004360/1 from the Medical Research Council (MRC) and by the MRC Centre for Neuropsychiatric Genetics and Genomics (G0800509). We are grateful to all professionals, patients and volunteers involved with the National Centre for Mental Health (NCMH).

Conflict of interest

None of the authors report any biomedical financial interests or potential conflict of interest that is relevant to the aforementioned manuscript.

References

  1. 1.
    Schizophrenia Working Group of the Psychiatric Genomics C (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. doi: 10.1038/nature13595 CrossRefGoogle Scholar
  2. 2.
    Nyegaard M, Demontis D, Foldager L, Hedemand A, Flint TJ, Sørensen KM, Andersen PS, Nordentoft M, Werge T, Pedersen CB, Hougaard DM, Mortensen PB, Mors O, Børglum AD (2010) CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatry 15(2):119–121. doi: 10.1038/mp.2009.69 CrossRefPubMedGoogle Scholar
  3. 3.
    Green EK, Hamshere M, Forty L, Gordon-Smith K, Fraser C, Russell E, Grozeva D, Kirov G, Holmans P, Moran JL, Purcell S, Sklar P, Owen MJ, O’Donovan MC, Jones L, Jones IR, WTCCC, Craddock N (2012) Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case–control sample. Mol Psychiatry. doi: 10.1038/mp.2012.142 Google Scholar
  4. 4.
    Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13(6):558–569. doi: 10.1038/sj.mp.4002151 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar VL, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, MacIntyre DJ, MacLean AW, St CD, Robinson M, Van Beck M, Pereira AC, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Gurling HM, Owen MJ, Purcell SM, Sklar P, Craddock N, Wellcome Trust Case Control C (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40(9):1056–1058. doi: 10.1038/ng.209 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Quinn EM, Hill M, Anney R, Gill M, Corvin AP, Morris DW (2010) Evidence for cis-acting regulation of ANK3 and CACNA1C gene expression. Bipolar Disord 12(4):440–445. doi: 10.1111/j.1399-5618.2010.00817.x CrossRefPubMedGoogle Scholar
  7. 7.
    Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B, Hyde TM, Lipska BK, Kleinman JE, Weinberger DR (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 67(9):939–945. doi: 10.1001/archgenpsychiatry.2010.96 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yoshimizu T, Pan JQ, Mungenast AE, Madison JM, Su S, Ketterman J, Ongur D, McPhie D, Cohen B, Perlis R, Tsai LH (2014) Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Mol Psychiatry. doi: 10.1038/mp.2014.143 PubMedPubMedCentralGoogle Scholar
  9. 9.
    Lancaster TM, Heerey EA, Mantripragada K, Linden DE (2014) CACNA1C risk variant affects reward responsiveness in healthy individuals. Transl Psychiatry 4:e461. doi: 10.1038/tp.2014.100 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Strohmaier J, Amelang M, Hothorn LA, Witt SH, Nieratschker V, Gerhard D, Meier S, Wust S, Frank J, Loerbroks A, Rietschel M, Sturmer T, Schulze TG (2013) The psychiatric vulnerability gene CACNA1C and its sex-specific relationship with personality traits, resilience factors and depressive symptoms in the general population. Mol Psychiatry 18(5):607–613. doi: 10.1038/mp.2012.53 CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang Q, Shen Q, Xu Z, Chen M, Cheng L, Zhai J, Gu H, Bao X, Chen X, Wang K, Deng X, Ji F, Liu C, Li J, Dong Q, Chen C (2012) The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. Neuropsychopharmacology 37(3):677–684. doi: 10.1038/npp.2011.242 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Perrier E, Pompei F, Ruberto G, Vassos E, Collier D, Frangou S (2011) Initial evidence for the role of CACNA1C on subcortical brain morphology in patients with bipolar disorder. Eur Psychiatry 26(3):135–137. doi: 10.1016/j.eurpsy.2010.10.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Kempton MJ, Ruberto G, Vassos E, Tatarelli R, Girardi P, Collier D, Frangou S (2009) Effects of the CACNA1C risk allele for bipolar disorder on cerebral gray matter volume in healthy individuals. Am J Psychiatry 166(12):1413–1414. doi: 10.1176/appi.ajp.2009.09050680 CrossRefPubMedGoogle Scholar
  14. 14.
    Wolf C, Mohr H, Schneider-Axmann T, Reif A, Wobrock T, Scherk H, Kraft S, Schmitt A, Falkai P, Gruber O (2014) CACNA1C genotype explains interindividual differences in amygdala volume among patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 264(2):93–102. doi: 10.1007/s00406-013-0427-y CrossRefPubMedGoogle Scholar
  15. 15.
    Wang F, McIntosh AM, He Y, Gelernter J, Blumberg HP (2011) The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. Bipolar Disord 13(7–8):696–700. doi: 10.1111/j.1399-5618.2011.00963.x CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Paulus FM, Bedenbender J, Krach S, Pyka M, Krug A, Sommer J, Mette M, Nothen MM, Witt SH, Rietschel M, Kircher T, Jansen A (2013) Association of rs1006737 in CACNA1C with alterations in prefrontal activation and fronto-hippocampal connectivity. Hum Brain Mapp. doi: 10.1002/hbm.22244 Google Scholar
  17. 17.
    Heck A, Fastenrath M, Ackermann S, Auschra B, Bickel H, Coynel D, Gschwind L, Jessen F, Kaduszkiewicz H, Maier W, Milnik A, Pentzek M, Riedel-Heller SG, Ripke S, Spalek K, Sullivan P, Vogler C, Wagner M, Weyerer S, Wolfsgruber S, de Quervain DJ, Papassotiropoulos A (2014) Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity. Neuron 81(5):1203–1213. doi: 10.1016/j.neuron.2014.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Erk S, Meyer-Lindenberg A, Schmierer P, Mohnke S, Grimm O, Garbusow M, Haddad L, Poehland L, Muhleisen TW, Witt SH, Tost H, Kirsch P, Romanczuk-Seiferth N, Schott BH, Cichon S, Nothen MM, Rietschel M, Heinz A, Walter H (2013) Hippocampal and frontolimbic function as intermediate phenotype for psychosis: evidence from healthy relatives and a common risk variant in CACNA1C. Biol Psychiatry. doi: 10.1016/j.biopsych.2013.11.025 PubMedGoogle Scholar
  19. 19.
    Erk S, Meyer-Lindenberg A, Schnell K, Opitz von Boberfeld C, Esslinger C, Kirsch P, Grimm O, Arnold C, Haddad L, Witt SH, Cichon S, Nothen MM, Rietschel M, Walter H (2010) Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry 67(8):803–811. doi: 10.1001/archgenpsychiatry.2010.94 CrossRefPubMedGoogle Scholar
  20. 20.
    Krug A, Witt SH, Backes H, Dietsche B, Nieratschker V, Shah NJ, Nothen MM, Rietschel M, Kircher T (2014) A genome-wide supported variant in CACNA1C influences hippocampal activation during episodic memory encoding and retrieval. Eur Arch Psychiatry Clin Neurosci 264(2):103–110. doi: 10.1007/s00406-013-0428-x CrossRefPubMedGoogle Scholar
  21. 21.
    Erk S, Meyer-Lindenberg A, Linden DE, Lancaster T, Mohnke S, Grimm O, Degenhardt F, Holmans P, Pocklington A, Schmierer P, Haddad L, Muhleisen TW, Mattheisen M, Witt SH, Romanczuk-Seiferth N, Tost H, Schott BH, Cichon S, Nothen MM, Rietschel M, Heinz A, Walter H (2014) Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects. Neuroimage 94C:147–154. doi: 10.1016/j.neuroimage.2014.03.007 CrossRefGoogle Scholar
  22. 22.
    Wessa M, Linke J, Witt SH, Nieratschker V, Esslinger C, Kirsch P, Grimm O, Hennerici MG, Gass A, King AV, Rietschel M (2010) The CACNA1C risk variant for bipolar disorder influences limbic activity. Mol Psychiatry 15(12):1126–1127. doi: 10.1038/mp.2009.103 CrossRefPubMedGoogle Scholar
  23. 23.
    Dietsche B, Backes H, Laneri D, Weikert T, Witt SH, Rietschel M, Sommer J, Kircher T, Krug A (2014) The impact of a CACNA1C gene polymorphism on learning and hippocampal formation in healthy individuals: a diffusion tensor imaging study. Neuroimage 89:256–261. doi: 10.1016/j.neuroimage.2013.11.030 CrossRefPubMedGoogle Scholar
  24. 24.
    Tesli M, Skatun KC, Ousdal OT, Brown AA, Thoresen C, Agartz I, Melle I, Djurovic S, Jensen J, Andreassen OA (2013) CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS One 8(2):e56970. doi: 10.1371/journal.pone.0056970 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jogia J, Ruberto G, Lelli-Chiesa G, Vassos E, Maierú M, Tatarelli R, Girardi P, Collier D, Frangou S (2011) The impact of the CACNA1C gene polymorphism on frontolimbic function in bipolar disorder. Mol Psychiatry 16(11):1070–1071. doi: 10.1038/mp.2011.49 CrossRefPubMedGoogle Scholar
  26. 26.
    Franke B, Vasquez AA, Veltman JA, Brunner HG, Rijpkema M, Fernandez G (2010) Genetic variation in CACNA1C, a gene associated with bipolar disorder, influences brainstem rather than gray matter volume in healthy individuals. Biol Psychiatry 68(6):586–588. doi: 10.1016/j.biopsych.2010.05.037 CrossRefPubMedGoogle Scholar
  27. 27.
    Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781. doi: 10.1016/j.neuroimage.2012.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355CrossRefPubMedGoogle Scholar
  29. 29.
    Morey RA, Selgrade ES, Wagner HR 2nd, Huettel SA, Wang L, McCarthy G (2010) Scan–rescan reliability of subcortical brain volumes derived from automated segmentation. Hum Brain Mapp 31(11):1751–1762. doi: 10.1002/hbm.20973 PubMedPubMedCentralGoogle Scholar
  30. 30.
    Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann Ø, Bernard M, Brown AA, Cannon DM, Chakravarty MM, Christoforou A, Domin M, Grimm O, Hollinshead M, Holmes AJ, Homuth G, Hottenga JJ, Langan C, Lopez LM, Hansell NK, Hwang KS, Kim S, Laje G, Lee PH, Liu X, Loth E, Lourdusamy A, Mattingsdal M, Mohnke S, Maniega SM, Nho K, Nugent AC, O’Brien C, Papmeyer M, Pütz B, Ramasamy A, Rasmussen J, Rijpkema M, Risacher SL, Roddey JC, Rose EJ, Ryten M, Shen L, Sprooten E, Strengman E, Teumer A, Trabzuni D, Turner J, van Eijk K, van Erp TG, van Tol MJ, Wittfeld K, Wolf C, Woudstra S, Aleman A, Alhusaini S, Almasy L, Binder EB, Brohawn DG, Cantor RM, Carless MA, Corvin A, Czisch M, Curran JE, Davies G, de Almeida MA, Delanty N, Depondt C, Duggirala R, Dyer TD, Erk S, Fagerness J, Fox PT, Freimer NB, Gill M, Göring HH, Hagler DJ, Hoehn D, Holsboer F, Hoogman M, Hosten N, Jahanshad N, Johnson MP, Kasperaviciute D, Kent JW, Kochunov P, Lancaster JL, Lawrie SM, Liewald DC, Mandl R, Matarin M, Mattheisen M, Meisenzahl E, Melle I, Moses EK, Mühleisen TW, Nauck M, Nöthen MM, Olvera RL, Pandolfo M, Pike GB, Puls R, Reinvang I, Rentería ME, Rietschel M, Roffman JL, Royle NA, Rujescu D, Savitz J, Schnack HG, Schnell K, Seiferth N, Smith C, Steen VM, Valdés Hernández MC, Van den Heuvel M, van der Wee NJ, Van Haren NE, Veltman JA, Völzke H, Walker R, Westlye LT, Whelan CD, Agartz I, Boomsma DI, Cavalleri GL, Dale AM, Djurovic S, Drevets WC, Hagoort P, Hall J, Heinz A, Jack CR, Foroud TM, Le Hellard S, Macciardi F, Montgomery GW, Poline JB, Porteous DJ, Sisodiya SM, Starr JM, Sussmann J, Toga AW, Veltman DJ, Walter H, Weiner MW, Bis JC, Ikram MA, Smith AV, Gudnason V, Tzourio C, Vernooij MW, Launer LJ, DeCarli C, Seshadri S, Andreassen OA, Apostolova LG, Bastin ME, Blangero J, Brunner HG, Buckner RL, Cichon S, Coppola G, de Zubicaray GI, Deary IJ, Donohoe G, de Geus EJ, Espeseth T, Fernández G, Glahn DC, Grabe HJ, Hardy J, Hulshoff Pol HE, Jenkinson M, Kahn RS, McDonald C, McIntosh AM, McMahon FJ, McMahon KL, Meyer-Lindenberg A, Morris DW, Müller-Myhsok B, Nichols TE, Ophoff RA, Paus T, Pausova Z, Penninx BW, Potkin SG, Sämann PG, Saykin AJ, Schumann G, Smoller JW, Wardlaw JM, Weale ME, Martin NG, Franke B, Wright MJ, Thompson PM, Initiative AsDN, Consortium E, Consortium I, Group SYS, Consortium CfH, Epidemiology ARiG, Consortium ENIGtM-A (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 44(5):552–561. doi: 10.1038/ng.2250 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann O, Bernard M, Brown AA, Cannon DM, Chakravarty MM, Christoforou A, Domin M, Grimm O, Hollinshead M, Holmes AJ, Homuth G, Hottenga JJ, Langan C, Lopez LM, Hansell NK, Hwang KS, Kim S, Laje G, Lee PH, Liu X, Loth E, Lourdusamy A, Mattingsdal M, Mohnke S, Maniega SM, Nho K, Nugent AC, O’Brien C, Papmeyer M, Putz B, Ramasamy A, Rasmussen J, Rijpkema M, Risacher SL, Roddey JC, Rose EJ, Ryten M, Shen L, Sprooten E, Strengman E, Teumer A, Trabzuni D, Turner J, van Eijk K, van Erp TG, van Tol MJ, Wittfeld K, Wolf C, Woudstra S, Aleman A, Alhusaini S, Almasy L, Binder EB, Brohawn DG, Cantor RM, Carless MA, Corvin A, Czisch M, Curran JE, Davies G, de Almeida MA, Delanty N, Depondt C, Duggirala R, Dyer TD, Erk S, Fagerness J, Fox PT, Freimer NB, Gill M, Goring HH, Hagler DJ, Hoehn D, Holsboer F, Hoogman M, Hosten N, Jahanshad N, Johnson MP, Kasperaviciute D, Kent JW Jr, Kochunov P, Lancaster JL, Lawrie SM, Liewald DC, Mandl R, Matarin M, Mattheisen M, Meisenzahl E, Melle I, Moses EK, Muhleisen TW, Nauck M, Nothen MM, Olvera RL, Pandolfo M, Pike GB, Puls R, Reinvang I, Renteria ME, Rietschel M, Roffman JL, Royle NA, Rujescu D, Savitz J, Schnack HG, Schnell K, Seiferth N, Smith C, Steen VM, Valdes Hernandez MC, Van den Heuvel M, van der Wee NJ, Van Haren NE, Veltman JA, Volzke H, Walker R, Westlye LT, Whelan CD, Agartz I, Boomsma DI, Cavalleri GL, Dale AM, Djurovic S, Drevets WC, Hagoort P, Hall J, Heinz A, Jack CR Jr, Foroud TM, Le Hellard S, Macciardi F, Montgomery GW, Poline JB, Porteous DJ, Sisodiya SM, Starr JM, Sussmann J, Toga AW, Veltman DJ, Walter H, Weiner MW, Alzheimer’s Disease Neuroimaging I, Consortium E, Consortium I, Saguenay Youth Study G, Bis JC, Ikram MA, Smith AV, Gudnason V, Tzourio C, Vernooij MW, Launer LJ, DeCarli C, Seshadri S, Cohorts for H, Aging Research in Genomic Epidemiology C, Bis JC, Ikram MA, Smith AV, Gudnason V, Tzourio C, Vernooij MW, Launer LJ, DeCarli C, Seshadri S, Cohorts for H, Aging Research in Genomic Epidemiology C, Andreassen OA, Apostolova LG, Bastin ME, Blangero J, Brunner HG, Buckner RL, Cichon S, Coppola G, de Zubicaray GI, Deary IJ, Donohoe G, de Geus EJ, Espeseth T, Fernandez G, Glahn DC, Grabe HJ, Hardy J, Hulshoff Pol HE, Jenkinson M, Kahn RS, McDonald C, McIntosh AM, McMahon FJ, McMahon KL, Meyer-Lindenberg A, Morris DW, Muller-Myhsok B, Nichols TE, Ophoff RA, Paus T, Pausova Z, Penninx BW, Potkin SG, Samann PG, Saykin AJ, Schumann G, Smoller JW, Wardlaw JM, Weale ME, Martin NG, Franke B, Wright MJ, Thompson PM (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 44(5):552–561. doi: 10.1038/ng.2250 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. doi: 10.1086/519795 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909. doi: 10.1038/ng1847 CrossRefPubMedGoogle Scholar
  34. 34.
    Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4):1181–1196. doi: 10.1016/j.neuroimage.2010.07.020 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhao K, Yan WJ, Chen YH, Zuo XN, Fu X (2013) Amygdala volume predicts inter-individual differences in fearful face recognition. PLoS One 8(8):e74096. doi: 10.1371/journal.pone.0074096 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS Jr, Faraone SV, Tsuang MT (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11(6):490–497CrossRefPubMedGoogle Scholar
  37. 37.
    Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922. doi: 10.1016/j.neuroimage.2011.02.046 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schulze TG, Akula N, Breuer R, Steele J, Nalls MA, Singleton AB, Degenhardt FA, Nothen MM, Cichon S, Rietschel M, Bipolar Genome S, McMahon FJ (2014) Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. World J Biol Psychiatry 15(3):200–208. doi: 10.3109/15622975.2012.662282 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Krug A, Nieratschker V, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stöcker T, Shah NJ, Treutlein J, Mühleisen TW, Kircher T (2010) Effect of CACNA1C rs1006737 on neural correlates of verbal fluency in healthy individuals. Neuroimage 49(2):1831–1836. doi: 10.1016/j.neuroimage.2009.09.028 CrossRefPubMedGoogle Scholar
  40. 40.
    Thimm M, Kircher T, Kellermann T, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stöcker T, Shah NJ, Nöthen MM, Rietschel M, Witt SH, Mathiak K, Krug A (2011) Effects of a CACNA1C genotype on attention networks in healthy individuals. Psychol Med 41(7):1551–1561. doi: 10.1017/s0033291710002217 CrossRefPubMedGoogle Scholar
  41. 41.
    Soeiro-de-Souza MG, Bio DS, Dias VV, Vieta E, Machado-Vieira R, Moreno RA (2013) The CACNA1C risk allele selectively impacts on executive function in bipolar type I disorder. Acta Psychiatr Scand 128(5):362–369. doi: 10.1111/acps.12073 CrossRefPubMedGoogle Scholar
  42. 42.
    Arts B, Simons CJ, Os J (2013) Evidence for the impact of the CACNA1C risk allele rs1006737 on 2-year cognitive functioning in bipolar disorder. Psychiatr Genet 23(1):41–42. doi: 10.1097/YPG.0b013e328358641c CrossRefPubMedGoogle Scholar
  43. 43.
    Erk S, Meyer-Lindenberg A, Schmierer P, Mohnke S, Grimm O, Garbusow M, Haddad L, Poehland L, Muhleisen TW, Witt SH, Tost H, Kirsch P, Romanczuk-Seiferth N, Schott BH, Cichon S, Nothen MM, Rietschel M, Heinz A, Walter H (2014) Hippocampal and frontolimbic function as intermediate phenotype for psychosis: evidence from healthy relatives and a common risk variant in CACNA1C. Biol Psychiatry 76(6):466–475. doi: 10.1016/j.biopsych.2013.11.025 CrossRefPubMedGoogle Scholar
  44. 44.
    Voglis G, Tavernarakis N (2006) The role of synaptic ion channels in synaptic plasticity. EMBO Rep 7(11):1104–1110. doi: 10.1038/sj.embor.7400830 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3(12):921–931. doi: 10.1038/nrn987 CrossRefPubMedGoogle Scholar
  46. 46.
    Pasparakis E, Koiliari E, Zouraraki C, Tsapakis EM, Roussos P, Giakoumaki SG, Bitsios P (2015) The effects of the CACNA1C rs1006737 A/G on affective startle modulation in healthy males. Eur Psychiatry. doi: 10.1016/j.eurpsy.2015.03.004 PubMedGoogle Scholar
  47. 47.
    Roussos P, Giakoumaki SG, Georgakopoulos A, Robakis NK, Bitsios P (2011) The CACNA1C and ANK3 risk alleles impact on affective personality traits and startle reactivity but not on cognition or gating in healthy males. Bipolar Disord 13(3):250–259. doi: 10.1111/j.1399-5618.2011.00924.x CrossRefPubMedGoogle Scholar
  48. 48.
    Dao DT, Mahon PB, Cai X, Kovacsics CE, Blackwell RA, Arad M, Shi J, Zandi PP, O’Donnell P, Bipolar Genome Study C, Knowles JA, Weissman MM, Coryell W, Scheftner WA, Lawson WB, Levinson DF, Thompson SM, Potash JB, Gould TD (2010) Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatry 68(9):801–810. doi: 10.1016/j.biopsych.2010.06.019 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lee AS, Ra S, Rajadhyaksha AM, Britt JK, De Jesus-Cortes H, Gonzales KL, Lee A, Moosmang S, Hofmann F, Pieper AA, Rajadhyaksha AM (2012) Forebrain elimination of cacna1c mediates anxiety-like behavior in mice. Mol Psychiatry 17(11):1054–1055. doi: 10.1038/mp.2012.71 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • T. M. Lancaster
    • 1
    • 2
    Email author
  • S. Foley
    • 2
    • 3
  • K. E. Tansey
    • 3
  • D. E. J. Linden
    • 1
    • 2
    • 3
  • X. Caseras
    • 2
    • 3
  1. 1.Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffWales, UK
  2. 2.Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffWales, UK
  3. 3.MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of MedicineCardiff UniversityCardiffWales, UK

Personalised recommendations