Increased neural activity during overt and continuous semantic verbal fluency in major depression: mainly a failure to deactivate

  • Heidelore Backes
  • Bruno Dietsche
  • Arne Nagels
  • Mirjam Stratmann
  • Carsten Konrad
  • Tilo Kircher
  • Axel Krug
Original Paper


Major depression is associated with impairments in semantic verbal fluency (VF). However, the neural correlates underlying dysfunctional cognitive processing in depressed subjects during the production of semantic category members still remain unclear. In the current study, an overt and continuous semantic VF paradigm was used to examine these mechanisms in a representative sample of 33 patients diagnosed with a current episode of unipolar depression and 33 statistically matched healthy controls. Subjects articulated words in response to semantic category cues while brain activity was measured with functional magnetic resonance imaging (fMRI). Compared to controls, patients showed poorer task performance. On the neural level, a group by condition interaction analysis, corrected for task performance, revealed a reduced task-related deactivation in patients in the right parahippocampal gyrus, the right fusiform gyrus, and the right supplementary motor area. An additional and an increased task-related activation in patients were observed in the right precentral gyrus and the left cerebellum, respectively. These results indicate that a failure to suppress potentially interfering activity from inferior temporal regions involved in default-mode network functions and visual imagery, accompanied by an enhanced recruitment of areas implicated in speech initiation and higher-order language processes, may underlie dysfunctional cognitive processing during semantic VF in depression. The finding that patients with depression demonstrated both decreased performance and aberrant brain activation during the current semantic VF task demonstrates that this paradigm is a sensitive tool for assessing brain dysfunctions in clinical populations.


Semantic verbal fluency Major depression fMRI Increased neural activity Failure to deactivate 


  1. 1.
    Alario FX, Chainay H, Lehericy S, Cohen L (2006) The role of the supplementary motor area (SMA) in word production. Brain Res 1076:129–143PubMedGoogle Scholar
  2. 2.
    Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18:251–270PubMedPubMedCentralGoogle Scholar
  3. 3.
    Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16:584–592PubMedPubMedCentralGoogle Scholar
  4. 4.
    Arbuthnott K, Frank J (2000) Trail making test, part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol 22:518–528PubMedGoogle Scholar
  5. 5.
    Audenaert K, Goethals I, Van Laere K, Lahorte P, Brans B, Versijpt J, Vervaet M, Beelaert L, Van Heeringen K, Dierckx R (2002) SPECT neuropsychological activation procedure with the verbal fluency test in attempted suicide patients. Nucl Med Commun 23:907–916PubMedGoogle Scholar
  6. 6.
    Austin MP, Mitchell P, Goodwin GM (2001) Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 178:200–206PubMedGoogle Scholar
  7. 7.
    Basho S, Palmer ED, Rubio MA, Wulfeck B, Muller RA (2007) Effects of generation mode in fMRI adaptations of semantic fluency: paced production and overt speech. Neuropsychologia 45:1697–1706PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bellani M, Dusi N, Yeh PH, Soares JC, Brambilla P (2011) The effects of antidepressants on human brain as detected by imaging studies. Focus on major depression. Prog Neuropsychopharmacol Biol Psychiatry 35:1544–1552PubMedGoogle Scholar
  9. 9.
    Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796PubMedPubMedCentralGoogle Scholar
  10. 10.
    Birn RM, Cox RW, Bandettini PA (2004) Experimental designs and processing strategies for fMRI studies involving overt verbal responses. Neuroimage 23:1046–1058PubMedGoogle Scholar
  11. 11.
    Birn RM, Kenworthy L, Case L, Caravella R, Jones TB, Bandettini PA, Martin A (2010) Neural systems supporting lexical search guided by letter and semantic category cues: a self-paced overt response fMRI study of verbal fluency. Neuroimage 49:1099–1107PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bowie CR, Harvey PD (2006) Administration and interpretation of the trail making test. Nat Protoc 1:2277–2281PubMedGoogle Scholar
  13. 13.
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedGoogle Scholar
  14. 14.
    Christoffels IK, Formisano E, Schiller NO (2007) Neural correlates of verbal feedback processing: an fMRI study employing overt speech. Hum Brain Mapp 28:868–879PubMedGoogle Scholar
  15. 15.
    De Smet HJ, Paquier P, Verhoeven J, Mariën P (2013) The cerebellum: its role in language and related cognitive and affective functions. Brain Lang 27:334–342Google Scholar
  16. 16.
    Demenescu LR, Renken R, Kortekaas R, van Tol MJ, Marsman JB, van Buchem MA, van der Wee NJ, Veltman DJ, den Boer JA, Aleman A (2011) Neural correlates of perception of emotional facial expressions in out-patients with mild-to-moderate depression and anxiety. A multicenter fMRI study. Psychol Med 41:2253–2264PubMedGoogle Scholar
  17. 17.
    Den Hartog HM, Derix MM, Van Bemmel AL, Kremer B, Jolles J (2003) Cognitive functioning in young and middle-aged unmedicated out-patients with major depression: testing the effort and cognitive speed hypotheses. Psychol Med 33:1443–1451Google Scholar
  18. 18.
    Diener C, Kuehner C, Brusniak W, Ubl B, Wessa M, Flor H (2012) A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression. Neuroimage 61:677–685PubMedGoogle Scholar
  19. 19.
    Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ebmeier K, Rose E, Steele D (2006) Cognitive impairment and fMRI in major depression. Neurotox Res 10:87–92PubMedGoogle Scholar
  21. 21.
    Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335PubMedGoogle Scholar
  22. 22.
    Fales CL, Barch DM, Rundle MM, Mintun MA, Mathews J, Snyder AZ, Sheline YI (2009) Antidepressant treatment normalizes hypoactivity in dorsolateral prefrontal cortex during emotional interference processing in major depression. J Affect Disord 112:206–211PubMedPubMedCentralGoogle Scholar
  23. 23.
    Fernández-Corcuera P, Salvador R, Monté GC, Salvador Sarró S, Goikolea JM, Amann B, Moro N, Sans-Sansa B, Ortiz-Gil J, Vieta E, Maristany T, McKenna PJ, Pomarol-Clotet E (2013) Bipolar depressed patients show both failure to activate and failure to de-activate during performance of a working memory task. J Affect Disord 148:170–178PubMedGoogle Scholar
  24. 24.
    Fisk JE, Sharp CA (2004) Age-related impairment in executive functioning: updating, inhibition, shifting, and access. J Clin Exp Neuropsychol 26:874–890PubMedGoogle Scholar
  25. 25.
    Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29:683–695PubMedPubMedCentralGoogle Scholar
  26. 26.
    Gabbay V, Ely BA, Li Q, Bangaru SD, Panzer AM, Alonso CM, Castellanos FX, Milham MP (2013) Striatum-based circuitry of adolescent depression and anhedonia. J Am Acad Child Adolesc Psychiatry 52:628–641PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ganis G, Thompson WL, Kosslyn SM (2004) Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cogn Brain Res 20:226–241Google Scholar
  28. 28.
    Gardini S, Cornoldi C, De Beni R, Venneri A (2009) Cognitive and neuronal processes involved in sequential generation of general and specific mental images. Psychol Res 73:633–643PubMedGoogle Scholar
  29. 29.
    Garrett A, Kelly R, Gomez R, Keller J, Schatzberg AF, Reiss AL (2011) Aberrant brain activation during a working memory task in psychotic major depression. Am J Psychiatry 168:173–182PubMedGoogle Scholar
  30. 30.
    Gohier B, Ferracci L, Surguladze SA, Lawrence E, El Hage W, Kefi MZ, Allain P, Garre JB, Le Gall D (2009) Cognitive inhibition and working memory in unipolar depression. J Affect Disord 116:100–105PubMedGoogle Scholar
  31. 31.
    Grimm S, Boesiger P, Beck J, Schuepbach D, Bermpohl F, Walter M, Ernst J, Hell D, Boeker H, Northoff G (2009) Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology 34:932–943PubMedGoogle Scholar
  32. 32.
    Guo WB, Liu F, Chen JD, Gao K, Xue ZM, Xu XJ, Wu RR, Tan CL, Sun XL, Liu ZN, Chen HF, Zhao JP (2012) Abnormal neural activity of brain regions in treatment-resistant and treatment-sensitive major depressive disorder: a resting-state fMRI study. J Psychiatr Res 46:1366–1373PubMedGoogle Scholar
  33. 33.
    Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, Chen H, Zhao J (2013) Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuropsychopharmacol Biol Psychiatry 44:51–57PubMedGoogle Scholar
  34. 34.
    Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694PubMedGoogle Scholar
  35. 35.
    Halvorsen M, Høifødt RS, Myrbakk IN, Wang CE, Sundet K, Eisemann M, Waterloo K (2012) Cognitive function in unipolar major depression: a comparison of currently depressed, previously depressed and never depressed individuals. J Clin Exp Neuropsychol 34:782–790PubMedGoogle Scholar
  36. 36.
    Hamilton JP, Furman DJ, Chang C, Thomason ME, Dennis E, Gotlib IH (2011) Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biol Psychiatry 70:327–333PubMedPubMedCentralGoogle Scholar
  37. 37.
    Hanslmayr S, Backes H, Straub S, Popov T, Langguth B, Hajak G, Bäuml KH, Landgrebe M (2012) Enhanced resting-state oscillations in schizophrenia are associated with decreased synchronization during inattentional blindness. Hum Brain Mapp 34:2266–2275PubMedGoogle Scholar
  38. 38.
    Harvey PO, Le Bastard G, Pochon JB, Levy R, Allilaire JF, Dubois B, Fossati P (2004) Executive functions and updating of the contents of working memory in unipolar depression. J Psychiatr Res 38:567–576PubMedGoogle Scholar
  39. 39.
    Hautzinger M, Bailer M, Worall H, Keller F (1994) Beck-Depressions-Inventar (BDI). Testhandbuch. Hans Huber, BernGoogle Scholar
  40. 40.
    Heim S, Eickhoff SB, Amunts K (2008) Specialisation in Broca’s region for semantic, phonological, and syntactic fluency? Neuroimage 40:1362–1368PubMedGoogle Scholar
  41. 41.
    Henry JD, Crawford JR (2004) A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology 18:284–295PubMedGoogle Scholar
  42. 42.
    Henry J, Crawford JR (2005) A meta-analytic review of verbal fluency deficits in depression. J Clin Exp Neuropsychol 27:78–101PubMedGoogle Scholar
  43. 43.
    Herrmann MJ, Ehlis AC, Fallgatter AJ (2004) Bilaterally reduced frontal activation during a verbal fluency task in depressed patients as measured by near-infrared spectroscopy. J Neuropsychiatry Clin Neurosci 16:170–175PubMedGoogle Scholar
  44. 44.
    Ho DE, Imai K, King G, Stuart EA (2011) MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw 42:1–28Google Scholar
  45. 45.
    Jaeger J, Berns S, Uzelac S, Davis-Conway S (2006) Neurocognitive deficits and disability in major depressive disorder. Psychiatry Res 145:39–48PubMedGoogle Scholar
  46. 46.
    Jürgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav Rev 26:235–258PubMedGoogle Scholar
  47. 47.
    Kameyama M, Fukuda M, Yamagishi Y, Sato T, Uehara T, Ito M, Suto T, Mikuni M (2006) Frontal lobe function in bipolar disorder: a multichannel near-infrared spectroscopy study. Neuroimage 29:172–184PubMedGoogle Scholar
  48. 48.
    Katzev M, Tuscher O, Hennig J, Weiller C, Kaller CP (2013) Revisiting the functional specialization of left inferior frontal gyrus in phonological and semantic fluency: the crucial role of task demands and individual ability. J Neurosci 33:7837–7845PubMedGoogle Scholar
  49. 49.
    E KH, Chen SH, Ho MH, Desmond JE (2012) A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. doi:10.1002/hbm.22194 PubMedGoogle Scholar
  50. 50.
    Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 62:593–602PubMedGoogle Scholar
  51. 51.
    Kircher T, Krug A, Markov V, Whitney C, Krach S, Zerres K, Eggermann T, Stöcker T, Shah NJ, Treutlein J, Nöthen MM, Becker T, Rietschel M (2009) Genetic variation in the schizophrenia-risk gene neuregulin 1 correlates with brain activation and impaired speech production in a verbal fluency task in healthy individuals. Hum Brain Mapp 30:3406–3416PubMedGoogle Scholar
  52. 52.
    Kircher T, Nagels A, Kirner-Veselinovic A, Krach S (2011) Neural correlates of rhyming versus lexical and semantic fluency. Brain Res 1391:71–80PubMedGoogle Scholar
  53. 53.
    Klumpp H, Deldin P (2010) Review of brain functioning in depression for semantic processing and verbal fluency. Int J Psychophysiol 75:77–85PubMedGoogle Scholar
  54. 54.
    Kosslyn SM, Thompson WL (2003) When is early visual cortex activated during visual mental imagery? Psychol Bull 129:723–746PubMedGoogle Scholar
  55. 55.
    Kreiman G, Koch C, Fried I (2000) Imagery neurons in the human brain. Nature 408:357–361PubMedGoogle Scholar
  56. 56.
    Krug A, Markov V, Sheldrick A, Krach S, Jansen A, Zerres K, Eggermann T, Stöcker T, Shah NJ, Kircher T (2009) The effect of the COMT val(158)met polymorphism on neural correlates of semantic verbal fluency. Eur Arch Psychiatry Clin Neurosci 259:459–465PubMedGoogle Scholar
  57. 57.
    Krug A, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stöcker T, Shah NJ, Nöthen MM, Georgi A, Strohmaier J, Rietschel M, Kircher T (2011) Genetic variation in G72 correlates with brain activation in the right middle temporal gyrus in a verbal fluency task in healthy individuals. Hum Brain Mapp 32:118–126PubMedGoogle Scholar
  58. 58.
    Kühn S, Gallinat J (2013) Resting-state brain activity in schizophrenia and major depression: a quantitative meta-analysis. Schizophr Bull 39:358–365PubMedPubMedCentralGoogle Scholar
  59. 59.
    Lafont V, Medecin I, Robert PH, Beaulieu FE, Kazes M, Danion JM, Pringuey D, Darcourt G (1998) Initiation and supervisory processes in schizophrenia and depression. Schizophr Res 34:49–57PubMedGoogle Scholar
  60. 60.
    Laux L, Glanzmann P, Schaffner P, Spielberger CD (1981) Das State-Trait-Angstinventar. Theoretische Grundlagen und Handanweisung. Beltz Test GmbH, WeinheimGoogle Scholar
  61. 61.
    Lee RS, Hermens DF, Porter MA, Redoblado-Hodge MA (2012) A meta-analysis of cognitive deficits in first-episode major depressive disorder. J Affect Disord 140:113–124PubMedGoogle Scholar
  62. 62.
    Lehrl S, Triebig G, Fischer B (1995) Multiple choice vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurol Scand 91:335–345PubMedGoogle Scholar
  63. 63.
    Lemogne C, Mayberg H, Bergouignan L, Volle E, Delaveau P, Léhericy S, Allilaire JF, Fossati P (2010) Self-referential processing and the prefrontal cortex over the course of depression: a pilot study. J Affect Disord 124:196–201PubMedGoogle Scholar
  64. 64.
    Lemogne C, Delaveau P, Freton M, Guionnet S, Fossati P (2012) Medial prefrontal cortex and the self in major depression. J Affect Disord 136:e1–e11PubMedGoogle Scholar
  65. 65.
    Lezak MD (1995) Neuropsychological assessment. Oxford University Press, OxfordGoogle Scholar
  66. 66.
    Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, Hu D (2012) Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One 7:e39516PubMedPubMedCentralGoogle Scholar
  67. 67.
    Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, Habas C, Hagura N, Ivry RB, Marien P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D (2012) Consensus paper: roles of the cerebellum in motor control: the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487PubMedGoogle Scholar
  68. 68.
    Marazziti D, Consoli G, Picchetti M, Carlini M, Faravelli L (2010) Cognitive impairment in major depression. Eur J Pharmacol 626:83–86PubMedGoogle Scholar
  69. 69.
    Marchand WR, Lee JN, Johnson S, Thatcher J, Gale P, Wood N, Jeong EK (2012) Striatal and cortical midline circuits in major depression: implications for suicide and symptom expression. Prog Neuropsychopharmacol Biol Psychiatry 36:290–299PubMedGoogle Scholar
  70. 70.
    Markov V, Krug A, Krach S, Whitney C, Eggermann T, Zerres K, Stöcker T, Shah NJ, Nöthen MM, Treutlein J, Rietschel M, Kircher T (2009) Genetic variation in schizophrenia-risk-gene dysbindin 1 modulates brain activation in anterior cingulate cortex and right temporal gyrus during language production in healthy individuals. Neuroimage 47:2016–2022PubMedGoogle Scholar
  71. 71.
    Matsuo K, Kato T, Fukuda M, Kato N (2000) Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured with near-infrared spectroscopy. J Neuropsychiatry Clin Neurosci 12:465–471PubMedGoogle Scholar
  72. 72.
    Matsuo K, Kato N, Kato T (2002) Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy. Psychol Med 32:1029–1037PubMedGoogle Scholar
  73. 73.
    Mechelli A, Price CJ, Friston KJ, Ishai A (2004) Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex 14:1256–1265PubMedGoogle Scholar
  74. 74.
    Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS, Connor R, Davis S, Deakin B, DeRubeis RJ, Dubois B, Geyer MA, Goodwin GM, Gorwood P, Jay TM, Joëls M, Mansuy IM, Meyer-Lindenberg A, Murphy D, Rolls E, Saletu B, Spedding M, Sweeney J, Whittington M, Young LJ (2012) Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 11:141–168PubMedGoogle Scholar
  75. 75.
    Murrough JW, Iacoviello B, Neumeister A, Charney DS, Iosifescu DV (2011) Cognitive dysfunction in depression: neurocircuitry and new therapeutic strategies. Neurobiol Learn Mem 96:553–563PubMedGoogle Scholar
  76. 76.
    Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869PubMedGoogle Scholar
  77. 77.
    Nagels A, Kirner-Veselinovic A, Krach S, Kircher T (2011) Neural correlates of S-ketamine induced psychosis during overt continuous verbal fluency. Neuroimage 54:1307–1314PubMedGoogle Scholar
  78. 78.
    Nagels A, Kircher T, Dietsche B, Backes H, Marquetand J, Krug A (2012) Neural processing of overt word generation in healthy individuals: the effect of age and word knowledge. Neuroimage 61:832–840PubMedGoogle Scholar
  79. 79.
    Naismith SL, Lagopoulos J, Ward PB, Davey CG, Little C, Hickie IB (2010) Fronto-striatal correlates of impaired implicit sequence learning in major depression: an fMRI study. J Affect Disord 125:256–261PubMedGoogle Scholar
  80. 80.
    Neu P, Kiesslinger U, Schlattmann P, Reischies FM (2001) Time-related cognitive deficiency in four different types of depression. Psychiatry Res 103:237–247PubMedGoogle Scholar
  81. 81.
    Neu P, Bajbouj M, Schilling A, Godemann F, Berman RM, Schlattmann P (2005) Cognitive function over the treatment course of depression in middle-aged patients: correlation with brain MRI signal hyperintensities. J Psychiatr Res 39:129–135PubMedGoogle Scholar
  82. 82.
    Noda T, Yoshida S, Matsuda T, Okamoto N, Sakamoto K, Koseki S, Numachi Y, Matsushima E, Kunugi H, Higuchi T (2012) Frontal and right temporal activations correlate negatively with depression severity during verbal fluency task: a multi-channel near-infrared spectroscopy study. J Psychiatr Res 46:905–912PubMedGoogle Scholar
  83. 83.
    O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12:1013–1023PubMedGoogle Scholar
  84. 84.
    O’Halloran CJ, Kinsella GJ, Storey E (2012) The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neuropsychol 34:35–56PubMedGoogle Scholar
  85. 85.
    Ohta H, Yamagata B, Tomioka H, Takahashi T, Yano M, Nakagome K, Mimura M (2008) Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy. Depress Anxiety 25:1053–1059PubMedGoogle Scholar
  86. 86.
    Okada G, Okamoto Y, Morinobu S, Yamawaki S, Yokota N (2003) Attenuated left prefrontal activation during a verbal fluency task in patients with depression. Neuropsychobiology 47:21–26PubMedGoogle Scholar
  87. 87.
    Okada G, Okamoto Y, Yamashita H, Ueda K, Takami H, Yamawaki S (2009) Attenuated prefrontal activation during a verbal fluency task in remitted major depression. Psychiatry Clin Neurosci 63:423–425PubMedGoogle Scholar
  88. 88.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedGoogle Scholar
  89. 89.
    Philpot MP, Banerjee S, Needham-Bennett H, Costa DC, Ell PJ (1993) 99mTc-HMPAO single photon emission tomography in late life depression: a pilot study of regional cerebral blood flow at rest and during a verbal fluency task. J Affect Disord 28:233–240PubMedGoogle Scholar
  90. 90.
    Pomarol-Clotet E, Salvador R, Sarró S, Gomar J, Vila F, Martínez Á, Guerrero A, Ortiz-Gil J, Sans-Sansa B, Capdevila A, Cebamanos JM, McKenna PJ (2008) Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? Psychol Med 38:1185–1193PubMedGoogle Scholar
  91. 91.
    Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191:62–88PubMedGoogle Scholar
  92. 92.
    Price JL, Drevets WC (2012) Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 16:61–71PubMedGoogle Scholar
  93. 93.
    Pu S, Matsumura H, Yamada T, Ikezawa S, Mitani H, Adachi A, Nakagome K (2008) Reduced frontopolar activation during verbal fluency task associated with poor functioning in late-onset major depression: multi-channel near-infrared spectroscopy study. Psychiatry Clin Neurosci 62:728–737PubMedGoogle Scholar
  94. 94.
    Pu S, Nakagome K, Yamada T, Yokoyama K, Matsumura H, Mitani H, Adachi A, Nagata I, Kaneko K (2012) The relationship between the prefrontal activation during a verbal fluency task and stress-coping style in major depressive disorder: a near-infrared spectroscopy study. J Psychiatr Res 46:1427–1434PubMedGoogle Scholar
  95. 95.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682PubMedPubMedCentralGoogle Scholar
  96. 96.
    Ravnkilde B, Videbech P, Clemmensen K, Egander A, Rasmussen NA, Rosenberg R (2002) Cognitive deficits in major depression. Scand J Psychol 43:239–251PubMedGoogle Scholar
  97. 97.
    Reitan RM (1955) The relation of the trail making test to organic brain damage. J Consult Psychol 19:393–394PubMedGoogle Scholar
  98. 98.
    Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, Ackermann H (2005) fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology 64:700–706PubMedGoogle Scholar
  99. 99.
    Rosenblau G, Sterzer P, Stoy M, Park S, Friedel E, Heinz A, Pilhatsch M, Bauer M, Ströhle A (2012) Functional neuroanatomy of emotion processing in major depressive disorder is altered after successful antidepressant therapy. J Psychopharmacol 26:1424–1433PubMedGoogle Scholar
  100. 100.
    Ruff RM, Light RH, Parker SB, Levin HS (1997) The psychological construct of word fluency. Brain Lang 57:394–405PubMedGoogle Scholar
  101. 101.
    Ryan L, Cox C, Hayes SM, Nadel L (2008) Hippocampal activation during episodic and semantic memory retrieval: comparing category production and category cued recall. Neuropsychologia 46:2109–2121PubMedPubMedCentralGoogle Scholar
  102. 102.
    Sacher J, Neumann J, Fünfstuck T, Soliman A, Villringer A, Schroeter ML (2012) Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord 140:142–148PubMedGoogle Scholar
  103. 103.
    Schmid M, Strand M, Ardal G, Lund A, Hammar A (2011) Prolonged impairment in inhibition and semantic fluency in a follow-up study of recurrent major depression. Arch Clin Neuropsychol 26:677–686PubMedGoogle Scholar
  104. 104.
    Sheldon S, Moscovitch M (2012) The nature and time-course of medial temporal lobe contributions to semantic retrieval: an MRI study on verbal fluency. Hippocampus 22:1451–1466PubMedGoogle Scholar
  105. 105.
    Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson RS, Raichle ME (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA 106:1942–1947PubMedPubMedCentralGoogle Scholar
  106. 106.
    Sinha R, Lacadie C, Skudlarski P, Wexler BE (2004) Neural circuits underlying emotional distress in humans. Ann N Y Acad Sci 1032:254–257PubMedGoogle Scholar
  107. 107.
    Slotnick SD, Schacter DL (2004) A sensory signature that distinguishes true from false memories. Nat Neurosci 7:664–672PubMedGoogle Scholar
  108. 108.
    Slotnick SD, Moo LR, Segal JB, Hart J Jr (2003) Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cogn Brain Res 17:75–82Google Scholar
  109. 109.
    Snyder HR (2013) Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull 139:81–132PubMedPubMedCentralGoogle Scholar
  110. 110.
    Sonuga-Barke EJ, Castellanos FX (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 31:977–986PubMedGoogle Scholar
  111. 111.
    Sörös P, Sokoloff LG, Bose A, McIntosh AR, Graham SJ, Stuss DT (2006) Clustered functional MRI of overt speech production. Neuroimage 32:376–387PubMedGoogle Scholar
  112. 112.
    Stephens GJ, Silbert LJ, Hasson U (2010) Speaker-listener neural coupling underlies successful communication. Proc Natl Acad Sci USA 7:14425–14430Google Scholar
  113. 113.
    Stoodley CJ (2012) The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 11:352–365PubMedGoogle Scholar
  114. 114.
    Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501PubMedGoogle Scholar
  115. 115.
    Stoodley CJ, Schmahmann JD (2009) The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang 110:149–153PubMedGoogle Scholar
  116. 116.
    Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844PubMedPubMedCentralGoogle Scholar
  117. 117.
    Stordal KI, Lundervold AJ, Egeland J, Mykletun A, Asbjørnsen A, Landrø NI, Roness A, Rund BR, Sundet K, Oedegaard KJ, Lund A (2004) Impairment across executive functions in recurrent major depression. Nord J Psychiatry 58:41–47PubMedGoogle Scholar
  118. 118.
    Straube B, Green A, Weis S, Kircher T (2012) A supramodal neural network for speech and gesture semantics: an fMRI study. PLoS One 7:e51207PubMedPubMedCentralGoogle Scholar
  119. 119.
    Stuhrmann A, Suslow T, Dannlowski U (2011) Facial emotion processing in major depression: a systematic review of neuroimaging findings. Biol Mood Anxiety Disord 1:10PubMedPubMedCentralGoogle Scholar
  120. 120.
    Surguladze S, Brammer MJ, Keedwell P, Giampietro V, Young AW, Travis MJ, Williams SC, Phillips ML (2005) A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biol Psychiatry 57:201–209PubMedGoogle Scholar
  121. 121.
    Suto T, Fukuda M, Ito M, Uehara T, Mikuni M (2004) Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry 55:501–511PubMedGoogle Scholar
  122. 122.
    Swick D, Ashley V, Turken U (2011) Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage 56:1655–1665PubMedGoogle Scholar
  123. 123.
    Takami H, Okamoto Y, Yamashita H, Okada G, Yamawaki S (2007) Attenuated anterior cingulate activation during a verbal fluency task in elderly patients with a history of multiple-episode depression. Am J Geriatr Psychiatry 15:594–603PubMedGoogle Scholar
  124. 124.
    Thomas EJ, Elliott R (2009) Brain imaging correlates of cognitive impairment in depression. Front Hum Neurosci 3:1–9Google Scholar
  125. 125.
    Tyler LK, Chiu S, Zhuang J, Randall B, Devereux BJ, Wright P, Clarke A, Taylor KI (2013) Objects and categories: feature statistics and object processing in the ventral stream. J Cogn Neurosci 25:1723–1735PubMedPubMedCentralGoogle Scholar
  126. 126.
    Unsworth N, Spillers GJ, Brewer GA (2011) Variation in verbal fluency: a latent variable analysis of clustering, switching, and overall performance. Q J Exp Psychol 64:447–466Google Scholar
  127. 127.
    Videbech P, Ravnkilde B, Kristensen S, Egander A, Clemmensen K, Rasmussen NA, Gjedde A, Rosenberg R (2003) The Danish PET/depression project: poor verbal fluency performance despite normal prefrontal activation in patients with major depression. Psychiatry Res 123:49–63PubMedGoogle Scholar
  128. 128.
    Wagner S, Doering B, Helmreich I, Lieb K, Tadíc A (2012) A meta-analysis of executive dysfunctions in unipolar major depressive disorder without psychotic symptoms and their changes during antidepressant treatment. Acta Psychiatr Scand 125:281–292PubMedGoogle Scholar
  129. 129.
    Walther S, Höfle O, Federspiel A, Horn H, Hügli S, Wiest R, Strik W, Müller TJ (2012) Neural correlates of disbalanced motor control in major depression. J Affect Disord 136:124–133PubMedGoogle Scholar
  130. 130.
    Wang L, Hermens DF, Hickie IB, Lagopoulos J (2012) A systematic review of resting-state functional-MRI studies in major depression. J Affect Disord 142:6–12Google Scholar
  131. 131.
    Ward AM, Schultz AP, Huijbers W, Van Dijk KR, Hedden T, Sperling RA (2013) The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Hum Brain Mapp. doi:10.1002/hbm.22234 PubMedPubMedCentralGoogle Scholar
  132. 132.
    Werner NS, Meindl T, Materne J, Engel RR, Huber D, Riedel M, Reiser M, Hennig-Fast K (2009) Functional MRI study of memory-related brain regions in patients with depressive disorder. J Affect Disord 119:124–131PubMedGoogle Scholar
  133. 133.
    Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76PubMedGoogle Scholar
  134. 134.
    Wildgruber D, Ackermann H, Grodd W (2001) Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage 13:101–109PubMedGoogle Scholar
  135. 135.
    Wittchen H-U, Wunderlich U, Gruschwitz S, Zaudig M (1997) SKID-I. Strukturiertes klinisches Interview für DSM-IV. Achse I: Psychische Störungen. Interviewheft. Hogrefe, GöttingenGoogle Scholar
  136. 136.
    Xu G, Lin K, Rao D, Dang Y, Ouyang H, Guo Y, Ma J, Chen J (2012) Neuropsychological performance in bipolar I, bipolar II and unipolar depression patients: a longitudinal, naturalistic study. J Affect Disord 136:328–339PubMedGoogle Scholar
  137. 137.
    Xue G, Aron AR, Poldrack RA (2008) Common neural substrates for inhibition of spoken and manual responses. Cereb Cortex 18:1923–1932PubMedGoogle Scholar
  138. 138.
    Zakzanis KK, Leach L, Kaplan E (1998) On the nature and pattern of neurocognitive function in major depressive disorder. Neuropsychiatry Neuropsychol Behav Neurol 11:111–119PubMedGoogle Scholar
  139. 139.
    Zeng LL, Shen H, Liu L, Wang L, Li B, Fang P, Zhou Z, Li Y, Hu D (2012) Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135:1498–1507PubMedGoogle Scholar
  140. 140.
    Zhu X, Wang X, Xiao J, Liao J, Zhong M, Wang W, Yao S (2012) Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol Psychiatry 71:611–617PubMedGoogle Scholar
  141. 141.
    Zvyagintsev M, Clemens B, Chechko N, Mathiak KA, Sack AT, Mathiak K (2013) Brain networks underlying mental imagery of auditory and visual information. Eur J Neurosci 37:1421–1434PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Heidelore Backes
    • 1
  • Bruno Dietsche
    • 1
  • Arne Nagels
    • 1
  • Mirjam Stratmann
    • 1
  • Carsten Konrad
    • 1
  • Tilo Kircher
    • 1
  • Axel Krug
    • 1
  1. 1.Department of Psychiatry and PsychotherapyPhilipps-University MarburgMarburgGermany

Personalised recommendations