Advertisement

Heart-type fatty acid binding protein and vascular endothelial growth factor: cerebrospinal fluid biomarker candidates for Alzheimer’s disease

  • Liang-Hao Guo
  • Panagiotis Alexopoulos
  • Robert Perneczky
Original Paper

Abstract

The main objective of the study was to validate the findings of previous cerebrospinal fluid (CSF) proteomic studies for the differentiation between Alzheimer’s disease (AD) dementia and physiological ageing. The most consistently significant proteins in the separation between AD dementia versus normal controls using CSF proteomics were identified in the literature. The classification performance of the four pre-selected proteins was explored in 92 controls, 149 patients with mild cognitive impairment (MCI), and 69 patients with AD dementia. Heart-type fatty acid binding protein (hFABP) and vascular endothelial growth factor (VEGF) CSF concentrations distinguished between healthy controls and patients with AD dementia with a sensitivity and specificity of 57 and 35 %, and 76 and 84 %, respectively. The optimal classification was achieved by a combination of the two additional CSF biomarker candidates in conjunction with the three established markers Amyloid-β (Aβ)1–42, total-Tau (tTau), and phosphorylated-Tau (pTau)181, which resulted in a sensitivity of 83 % and a specificity of 86 %. hFABP also predicted the progression from MCI to AD dementia. The present study provides evidence in support of hFABP and VEGF in CSF as AD biomarker candidates to be used in combination with the established markers Aβ1–42, tTau, and pTau181.

Keywords

Alzheimer’s disease Biomarker Cerebrospinal fluid Diagnosis Proteomics 

Notes

Acknowledgments

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organisation is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for NeuroImaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514. The sponsors did not have any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. The corresponding author had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The authors wish to thank Dorottya Ruisz for proofreading.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

406_2013_405_MOESM1_ESM.doc (162 kb)
Supplementary material 1 (DOC 162 kb)

References

  1. 1.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300Google Scholar
  2. 2.
    Bjerke M, Zetterberg H, Edman A, Blennow K, Wallin A, Andreasson U (2011) Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimers dis 27:665–676PubMedGoogle Scholar
  3. 3.
    Blasko I, Lederer W, Oberbauer H, Walch T, Kemmler G, Hinterhuber H, Marksteiner J, Humpel C (2006) Measurement of thirteen biological markers in CSF of patients with Alzheimer’s disease and other dementias. Dement Geriatr Cogn Dis 21:9–15CrossRefGoogle Scholar
  4. 4.
    Blennow K, Zetterberg H (2009) Cerebrospinal fluid biomarkers for Alzheimer’s disease. J Alzheimers dis 18:413–417PubMedGoogle Scholar
  5. 5.
    Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144PubMedCrossRefGoogle Scholar
  6. 6.
    Britschgi M, Rufibach K, Huang SL, Clark CM, Kaye JA, Li G, Peskind ER, Quinn JF, Galasko DR, Wyss-Coray T (2011) Modeling of pathological traits in Alzheimer’s disease based on systemic extracellular signalling proteome. Mol Cell Proteomics 10:M111.008862PubMedCrossRefGoogle Scholar
  7. 7.
    Burger S, Noack M, Kirazov LP, Kirazov EP, Naydenov CL, Kouznetsova E, Yafai Y, Schliebs R (2009) Vascular endothelial growth factor (vegf) affects processing of amyloid precursor protein and beta-amyloidogenesis in brain slice cultures derived from transgenic tg2576 mouse brain. Int J Dev Neurosci 27:517–523PubMedCrossRefGoogle Scholar
  8. 8.
    Catelan D, Biggeri A (2010) Multiple testing in disease mapping and descriptive epidemiology. Geospat health 4:219–229PubMedGoogle Scholar
  9. 9.
    Cheon MS, Kim SH, Fountoulakis M, Lubec G (2003) Heart type fatty acid binding protein (h-fabp) is decreased in brains of patients with down syndrome and Alzheimer’s disease. J neural transm Suppl 67:225–234PubMedCrossRefGoogle Scholar
  10. 10.
    Chiasserini D, Parnetti L, Andreasson U, Zetterberg H, Giannandrea D, Calabresi P, Blennow K (2010) CSF levels of heart fatty acid binding protein are altered during early phases of Alzheimer’s disease. J Alzheimers dis 22:1281–1288PubMedGoogle Scholar
  11. 11.
    Chin AL, Negash S, Hamilton R (2011) Diversity and disparity in dementia: the impact of ethnoracial differences in Alzheimer disease. Alzheimer Dis Assoc Disord 25:187–195PubMedCrossRefGoogle Scholar
  12. 12.
    Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM, Holtzman DM (2011) Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer’s disease diagnosis and prognosis. PLoS ONE 6:e18850PubMedCrossRefGoogle Scholar
  13. 13.
    Guo LH, Alexopoulos P, Eisele T, Wagenpfeil S, Kurz A, Perneczky R (2012) The national institute on Aging–Alzheimer’s association research criteria for mild cognitive impairment due to Alzheimer’s disease: Predicting the outcome. Eur Arch Psychiatry Clin Neurosci. doi: 10.1007/s00406-012-0349-0
  14. 14.
    Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, Shaw LM, McCluskey L, Elman L, Karlawish J, Hurtig HI, Siderowf A, Lee VM, Soares H, Trojanowski JQ (2010) Biomarker discovery for Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease. Acta Neuropathol 120:385–399PubMedCrossRefGoogle Scholar
  15. 15.
    Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, Shaw LM, Pickering E, Kuhn M, Chen Y, McCluskey L, Elman L, Karlawish J, Hurtig HI, Siderowf A, Lee VM, Soares H, Trojanowski JQ (2010) Novel csf biomarkers for Alzheimer’s disease and mild cognitive impairment. Acta Neuropathol 119:669–678PubMedCrossRefGoogle Scholar
  16. 16.
    Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP, Bancher C, Cras P, Wiltfang J, Mehta PD, Iqbal K, Pottel H, Vanmechelen E, Vanderstichele H (1999) Improved discrimination of ad patients using beta-amyloid(1–42) and tau levels in csf. Neurology 52:1555–1562PubMedCrossRefGoogle Scholar
  17. 17.
    Jack CR Jr, Vemuri P, Wiste HJ, Weigand SD, Aisen PS, Trojanowski JQ, Shaw LM, Bernstein MA, Petersen RC, Weiner MW, Knopman DS (2011) Evidence for ordering of alzheimer disease biomarkers. Arch Neurol 68:1526–1535PubMedCrossRefGoogle Scholar
  18. 18.
    Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD (1998) Vascular endothelial growth factor in Alzheimer’s disease and experimental cerebral ischemia. Brain Res Mol Brain Res 62:101–105PubMedCrossRefGoogle Scholar
  19. 19.
    Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, Shaw LM, Trojanowski JQ, Potkin SG, Huentelman MJ, Craig DW, Dechairo BM, Aisen PS, Petersen RC, Weiner MW, Saykin AJ (2011) Genome-wide association study of csf biomarkers a{beta}1-42, t-tau, and p-tau181p in the adni cohort. Neurology 76:69–79PubMedCrossRefGoogle Scholar
  20. 20.
    Lescuyer P, Allard L, Hochstrasser DF, Sanchez JC (2005) Heart-fatty acid-binding protein as a marker for early detection of acute myocardial infarction and stroke. Mol diagn 9:1–7PubMedCrossRefGoogle Scholar
  21. 21.
    Martins-de-Souza D (2010) Is the word ‘biomarker’ being properly used by proteomics research in neuroscience? Eur Arch Psychiatry Clin Neurosci 260:561–562PubMedCrossRefGoogle Scholar
  22. 22.
    Matsui Y, Satoh K, Mutsukura K, Watanabe T, Nishida N, Matsuda H, Sugino M, Shirabe S, Eguchi K, Kataoka Y (2010) Development of an ultra-rapid diagnostic method based on heart-type fatty acid binding protein levels in the csf of cjd patients. Cell Mol Neurobiol 30:991–999PubMedCrossRefGoogle Scholar
  23. 23.
    Mollenhauer B, Steinacker P, Bahn E, Bibl M, Brechlin P, Schlossmacher MG, Locascio JJ, Wiltfang J, Kretzschmar HA, Poser S, Trenkwalder C, Otto M (2007) Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: marker candidates for dementia with lewy bodies. Neurodegener dis 4:366–375PubMedCrossRefGoogle Scholar
  24. 24.
    Morris JC, McKeel DW Jr, Fulling K, Torack RM, Berg L (1988) Validation of clinical diagnostic criteria for Alzheimer’s disease. Ann Neurol 24:17–22PubMedCrossRefGoogle Scholar
  25. 25.
    Ohrfelt A, Andreasson U, Simon A, Zetterberg H, Edman A, Potter W, Holder D, Devanarayan V, Seeburger J, Smith AD, Blennow K, Wallin A (2011) Screening for new biomarkers for subcortical vascular dementia and Alzheimer’s disease. Dement geriatr cogn dis extra 1:31–42PubMedCrossRefGoogle Scholar
  26. 26.
    Otto M, Lewczuk P, Wiltfang J (2008) Neurochemical approaches of cerebrospinal fluid diagnostics in neurodegenerative diseases. Methods 44:289–298PubMedCrossRefGoogle Scholar
  27. 27.
    Pelsers MM, Hanhoff T, Van der Voort D, Arts B, Peters M, Ponds R, Honig A, Rudzinski W, Spener F, de Kruijk JR, Twijnstra A, Hermens WT, Menheere PP, Glatz JF (2004) Brain- and heart-type fatty acid-binding proteins in the brain: tissue distribution and clinical utility. Clin Chem 50:1568–1575PubMedCrossRefGoogle Scholar
  28. 28.
    Provias J, Jeynes B (2011) Correlation analysis of capillary apoe, vegf and enos expression in alzheimer brains. Curr Alzheimer Res 8:197–202PubMedCrossRefGoogle Scholar
  29. 29.
    Radebaugh T, Khachaturian ZS (1998) Consensus report of the working group on: “Molecular and biochemical markers of Alzheimer’s disease”. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s association and the National Institute on Aging Working Group. Neurobiol Aging 19:109–116Google Scholar
  30. 30.
    Roman GC (2004) Vascular dementia. Advances in nosology, diagnosis, treatment and prevention. Panminerva Med 46:207–215PubMedGoogle Scholar
  31. 31.
    Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P (2009) Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 89:607–648PubMedCrossRefGoogle Scholar
  32. 32.
    Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM, Trojanowski JQ (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s Disease Neuroimaging Initiative Subjects. Ann Neurol 65:403–413PubMedCrossRefGoogle Scholar
  33. 33.
    Shaw LM, Vanderstichele H, Knapik-Czajka M, Figurski M, Coart E, Blennow K, Soares H, Simon AJ, Lewczuk P, Dean RA, Siemers E, Potter W, Lee VM, Trojanowski JQ (2011) Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathol 121:597–609PubMedCrossRefGoogle Scholar
  34. 34.
    Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimers dement 7:280–292PubMedCrossRefGoogle Scholar
  35. 35.
    Steinacker P, Mollenhauer B, Bibl M, Cepek L, Esselmann H, Brechlin P, Lewczuk P, Poser S, Kretzschmar HA, Wiltfang J, Trenkwalder C, Otto M (2004) Heart fatty acid binding protein as a potential diagnostic marker for neurodegenerative diseases. Neurosci Lett 370:36–39PubMedCrossRefGoogle Scholar
  36. 36.
    Storch J, Thumser AE (2010) Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem 285:32679–32683PubMedCrossRefGoogle Scholar
  37. 37.
    Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445PubMedCrossRefGoogle Scholar
  38. 38.
    Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, Kumar P (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging 23:237–243PubMedCrossRefGoogle Scholar
  39. 39.
    Thambisetty M, Lovestone S (2010) Blood-based biomarkers of Alzheimer’s disease: challenging but feasible. Biomark med 4:65–79PubMedCrossRefGoogle Scholar
  40. 40.
    Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter WZ, Weiner MW, Jack CR Jr, Jagust W, Toga AW, Lee VM, Shaw LM (2010) Update on the biomarker core of the Alzheimer’s disease neuroimaging initiative subjects. Alzheimers dement 6:230–238PubMedCrossRefGoogle Scholar
  41. 41.
    Veerkamp JH, Zimmerman AW (2001) Fatty acid-binding proteins of nervous tissue. J mol neurosci 16:133–142 discussion 151–137PubMedCrossRefGoogle Scholar
  42. 42.
    Vidoni ED, Townley RA, Honea RA, Burns JM (2011) Alzheimer disease biomarkers are associated with body mass index. Neurology 77:1913–1920PubMedCrossRefGoogle Scholar
  43. 43.
    Wagner M, Wolf S, Reischies FM, Daerr M, Wolfsgruber S, Jessen F, Popp J, Maier W, Hull M, Frolich L, Hampel H, Perneczky R, Peters O, Jahn H, Luckhaus C, Gertz HJ, Schroder J, Pantel J, Lewczuk P, Kornhuber J, Wiltfang J (2012) Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease. Neurology 78:379–386PubMedCrossRefGoogle Scholar
  44. 44.
    Wunderlich MT, Hanhoff T, Goertler M, Spener F, Glatz JF, Wallesch CW, Pelsers MM (2005) Release of brain-type and heart-type fatty acid-binding proteins in serum after acute ischaemic stroke. J Neurol 252:718–724PubMedCrossRefGoogle Scholar
  45. 45.
    Yang SP, Bae DG, Kang HJ, Gwag BJ, Gho YS, Chae CB (2004) Co-accumulation of vascular endothelial growth factor with beta-amyloid in the brain of patients with Alzheimer’s disease. Neurobiol Aging 25:283–290PubMedCrossRefGoogle Scholar
  46. 46.
    Zanier ER, Longhi L, Fiorini M, Cracco L, Bersano A, Zoerle T, Branca V, Monaco S, Stocchetti N (2008) Increased levels of CSF heart-type fatty acid-binding protein and tau protein after aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl 102:339–343PubMedCrossRefGoogle Scholar
  47. 47.
    Zellner M, Veitinger M, Umlauf E (2009) The role of proteomics in dementia and alzheimer’s disease. Acta Neuropathol 118:181–195PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang J, Sokal I, Peskind ER, Quinn JF, Jankovic J, Kenney C, Chung KA, Millard SP, Nutt JG, Montine TJ (2008) CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am j of clinical pathology 129:526–529CrossRefGoogle Scholar
  49. 49.
    Zolg W (2006) The proteomic search for diagnostic biomarkers: lost in translation? Mol Cell Proteomics 5:1720–1726PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Liang-Hao Guo
    • 1
  • Panagiotis Alexopoulos
    • 1
  • Robert Perneczky
    • 1
    • 2
    • 3
  1. 1.Department of Psychiatry and PsychotherapyTechnische Universität MünchenMunichGermany
  2. 2.Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of MedicineThe Imperial College of Science, Technology and MedicineLondonUK
  3. 3.West London Cognitive Disorders Treatment and Research UnitWest London Mental Health TrustLondonUK

Personalised recommendations