The effect of aerobic exercise on cortical architecture in patients with chronic schizophrenia: a randomized controlled MRI study

  • Peter Falkai
  • Berend Malchow
  • Thomas Wobrock
  • Oliver Gruber
  • Andrea Schmitt
  • William G. Honer
  • Frank-Gerald Pajonk
  • Frank Sun
  • Tyrone D. Cannon
Original Paper

Abstract

Via influencing brain plasticity, aerobic exercise could contribute to the treatment of schizophrenia patients. As previously shown, physical exercise increases hippocampus volume and improves short-term memory. We now investigated gray matter density and brain surface expansion in this sample using MRI-based cortical pattern matching methods. Comparing schizophrenia patients to healthy controls before and after 3 months of aerobic exercise training (cycling) plus patients playing table football yielded gray matter density increases in the right frontal and occipital cortex merely in healthy controls. However, respective exercise effects might be attenuated in chronic schizophrenia, which should be verified in a larger sample.

Keywords

Schizophrenia Physical exercise MRI Cortex Gray matter Surface expansion 

References

  1. 1.
    Bogerts B, Falkai P, Haupts M, Greve B, Ernst S, Tapernon-Franz U, Heinzmann U (1990) Post-mortem volume measurements of limbic system and basal ganglia structures in chronic schizophrenics. Initial results from a new brain collection. Schizophr Res 3:295–301PubMedCrossRefGoogle Scholar
  2. 2.
    Bugg JM, Head D (2011) Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiol Aging 32:506–514PubMedCrossRefGoogle Scholar
  3. 3.
    Cahn W, Rais M, Stigter FP, van Haren NE, Caspers E, Hulshoff Pol HE, Xu Z, Schnack HG, Kahn RS (2009) Psychosis and brain volume changes during the first five years of schizophrenia. Eur Neuropsychopharmacol 19:147–151PubMedCrossRefGoogle Scholar
  4. 4.
    Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sc 58:176–180CrossRefGoogle Scholar
  5. 5.
    Davis CL, Tomporowski PD, McDowell JE, Austin BP, Miller PH, Yanasak NE, Allison JD, Naglieri JA (2011) Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health psychol 30:91–98PubMedCrossRefGoogle Scholar
  6. 6.
    Eack SM, Hogarty GE, Cho RY, Prasad KM, Greenwald DP, Hogarty SS, Keshavan MS (2010) Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: results from a 2-year randomized controlled trial. Arch Gen Psychiatry 67:674–682PubMedCrossRefGoogle Scholar
  7. 7.
    Ellison-Wright I, Bullmore E (2010) Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr Res 117:1–12PubMedCrossRefGoogle Scholar
  8. 8.
    Falkai P, Honer WG, David S, Bogerts B, Majtenyi C, Bayer TA (1999) No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25:48–53Google Scholar
  9. 9.
    Floel A, Ruscheweyh R, Kruger K, Willemer C, Winter B, Volker K, Lohmann H, Zitzmann M, Mooren F, Breitenstein C, Knecht S (2010) Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link? Neuroimage 49:2756–2763PubMedCrossRefGoogle Scholar
  10. 10.
    Gondoh Y, Sensui H, Kinomura S, Fukuda H, Fujimoto T, Masud M, Nagamatsu T, Tamaki H, Takekura H (2009) Effects of aerobic exercise training on brain structure and psychological well-being in young adults. J Sports Med Phys Fit 49:129–135Google Scholar
  11. 11.
    Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V (2011) Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 68:128–137PubMedCrossRefGoogle Scholar
  12. 12.
    Hyodo K, Dan I, Suwabe K, Kyutoku Y, Yamada Y, Akahori M, Byun K, Kato M, Soya H (2012) Acute moderate exercise enhances compensatory brain activation in older adults. Neurobiol AgingGoogle Scholar
  13. 13.
    Kempton MJ, Geddes JR, Ettinger U, Williams SC, Grasby PM (2008) Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry 65:1017–1032PubMedCrossRefGoogle Scholar
  14. 14.
    Knochel C, Oertel-Knochel V, O’Dwyer L, Prvulovic D, Alves G, Kollmann B, Hampel H (2012) Cognitive and behavioural effects of physical exercise in psychiatric patients. Prog Neurobiol 96:46–68PubMedCrossRefGoogle Scholar
  15. 15.
    Kwon YH, Park JW (2011) Different cortical activation patterns during voluntary eccentric and concentric muscle contractions: an fmri study. Neurorehabilitation 29:253–259PubMedGoogle Scholar
  16. 16.
    Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RS, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M (2005) Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 62:361–370PubMedCrossRefGoogle Scholar
  17. 17.
    Maddock RJ, Casazza GA, Buonocore MH, Tanase C (2011) Vigorous exercise increases brain lactate and glx (glutamate + glutamine): a dynamic 1 h-mrs study. Neuroimage 57:1324–1330PubMedCrossRefGoogle Scholar
  18. 18.
    Pajonk FG, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, Kierer A, Muller S, Oest M, Meyer T, Backens M, Schneider-Axmann T, Thornton AE, Honer WG, Falkai P (2010) Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 67:133–143PubMedCrossRefGoogle Scholar
  19. 19.
    Peters J, Dauvermann M, Mette C, Platen P, Franke J, Hinrichs T, Daum I (2009) Voxel-based morphometry reveals an association between aerobic capacity and grey matter density in the right anterior insula. Neuroscience 163:1102–1108PubMedCrossRefGoogle Scholar
  20. 20.
    Rhyu IJ, Bytheway JA, Kohler SJ, Lange H, Lee KJ, Boklewski J, McCormick K, Williams NI, Stanton GB, Greenough WT, Cameron JL (2010) Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167:1239–1248PubMedCrossRefGoogle Scholar
  21. 21.
    Ruscheweyh R, Willemer C, Kruger K, Duning T, Warnecke T, Sommer J, Volker K, Ho HV, Mooren F, Knecht S, Floel A (2011) Physical activity and memory functions: an interventional study. Neurobiol Aging 32:1304–1319PubMedCrossRefGoogle Scholar
  22. 22.
    Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154PubMedCrossRefGoogle Scholar
  23. 23.
    Schmitt A, Steyskal C, Bernstein HG, Schneider-Axmann T, Parlapani E, Schaeffer EL, Gattaz WF, Bogerts B, Schmitz C, Falkai P (2009) Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 117:395–407PubMedCrossRefGoogle Scholar
  24. 24.
    Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, van Erp TG, Cannon TD, Toga AW (2004) Mapping cortical change in alzheimer’s disease, brain development, and schizophrenia. Neuroimage 23(Suppl 1):S2–18PubMedCrossRefGoogle Scholar
  25. 25.
    van Haren NE, Schnack HG, Cahn W, van den Heuvel MP, Lepage C, Collins L, Evans AC, Hulshoff Pol HE, Kahn RS (2011) Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry 68:871–880PubMedCrossRefGoogle Scholar
  26. 26.
    Vancampfort D, Probst M, Scheewe T, Knapen J, De Herdt A, De Hert M (2012) The functional exercise capacity is correlated with global functioning in patients with schizophrenia. Acta Psychiatr Scand 125:382–387PubMedCrossRefGoogle Scholar
  27. 27.
    Wolff E, Gaudlitz K, von Lindenberger BL, Plag J, Heinz A, Strohle A (2011) Exercise and physical activity in mental disorders. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S186–S191PubMedCrossRefGoogle Scholar
  28. 28.
    Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyutoku Y, Soya H (2010) Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with stroop test. Neuroimage 50:1702–1710PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter Falkai
    • 1
  • Berend Malchow
    • 1
    • 2
  • Thomas Wobrock
    • 2
    • 3
  • Oliver Gruber
    • 2
  • Andrea Schmitt
    • 1
  • William G. Honer
    • 4
  • Frank-Gerald Pajonk
    • 1
  • Frank Sun
    • 5
  • Tyrone D. Cannon
    • 5
  1. 1.Department of Psychiatry and PsychotherapyLudwig-Maximilians-University MunichMunichGermany
  2. 2.Department of Psychiatry and PsychotherapyUniversity of GöttingenGöttingenGermany
  3. 3.Center of Mental HealthCounty Hospitals Darmstadt-DieburgGroß-UmstadtGermany
  4. 4.Department of PsychiatryUniversity of British ColumbiaVancouverCanada
  5. 5.Departments of Psychology and Psychiatry and Biobehavioral SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations