Homocysteine and cognition in first-episode psychosis patients

  • Rosa Ayesa-Arriola
  • Rocío Pérez-Iglesias
  • José Manuel Rodríguez-Sánchez
  • Ignacio Mata
  • Elsa Gómez-Ruiz
  • Maite García-Unzueta
  • Obdulia Martínez-García
  • Rafael Tabares-Seisdedos
  • Jose L. Vázquez-Barquero
  • Benedicto Crespo-Facorro
Original Paper


In the last years, there has been growing evidence linking elevated homocysteine levels with cognitive dysfunction in several neurological and neuropsychiatric diseases. The aim of the present study was to investigate the potential relationship between elevated homocysteine levels and cognitive deficits in first-episode psychosis patients. Plasma levels and cognitive performance of 139 patients and 99 healthy volunteers were compared. Patients were classified as elevated homocysteine (>90 percentile for controls) and normal and compared on 22 cognitive outcome measures grouped into cognitive domains known to be impaired in schizophrenia. Patients had a statistically significant increase in plasmatic homocysteine levels. In addition, they presented with significantly increased cognitive deficits. However, no relationship between homocysteine levels and cognitive impairment was detected. These results suggest the need for further studies to clarify the role of homocysteine in the etiology and prognosis of psychosis.


Homocysteine Cognition Psychosis Schizophrenia 

Supplementary material

406_2012_302_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)


  1. 1.
    Andreasen NC (1983) Scale for the assessment of negative symptoms (sans). University of Iowa, Iowa CityGoogle Scholar
  2. 2.
    Andreasen NC (1984) Scale for the assessment of positive symptoms (saps). University of Iowa, Iowa CityGoogle Scholar
  3. 3.
    Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I (2001) The “reading the mind in the eyes” test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 42:241–251PubMedCrossRefGoogle Scholar
  4. 4.
    Brown AS, Bottiglieri T, Schaefer CA, Quesenberry CP Jr, Liu L, Bresnahan M, Susser ES (2007) Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Arch Gen Psychiatry 64:31–39PubMedCrossRefGoogle Scholar
  5. 5.
    Carew TG, Lamar M, Cloud BS, Grossman M, Libon DJ (1997) Impairment in category fluency in ischemic vascular dementia. Neuropsychology 11:400–412PubMedCrossRefGoogle Scholar
  6. 6.
    Cegalis JBJ (1991) Vigil: Software for the assessment of attention. Forthought Nashua, NH, InGoogle Scholar
  7. 7.
    Cortese C, Motti C (2001) Mthfr gene polymorphism, homocysteine and cardiovascular disease. Public Health Nutr 4:493–497PubMedCrossRefGoogle Scholar
  8. 8.
    Crespo-Facorro B, Rodriguez-Sanchez JM, Perez-Iglesias R, Mata I, Ayesa R, Ramirez-Bonilla M, Martinez-Garcia O, Vazquez-Barquero JL (2009) Neurocognitive effectiveness of haloperidol, risperidone, and olanzapine in first-episode psychosis: a randomized, controlled 1-year follow-up comparison. J Clin Psychiatry 70:717–729PubMedCrossRefGoogle Scholar
  9. 9.
    Dias VV, Brissos S, Cardoso C, Andreazza AC, Kapczinski F (2009) Serum homocysteine levels and cognitive functioning in euthymic bipolar patients. J Affect Disord 113:285–290PubMedCrossRefGoogle Scholar
  10. 10.
    Dittmann S, Seemuller F, Grunze HC, Schwarz MJ, Zach J, Fast K, Born C, Dargel S, Engel RR, Bernhard B, Moller HJ, Riedel M, Severus WE (2008) The impact of homocysteine levels on cognition in euthymic bipolar patients: a cross-sectional study. J Clin Psychiatry 69:899–906PubMedCrossRefGoogle Scholar
  11. 11.
    Elias MF, Sullivan LM, D’Agostino RB, Elias PK, Jacques PF, Selhub J, Seshadri S, Au R, Beiser A, Wolf PA (2005) Homocysteine and cognitive performance in the Framingham offspring study: age is important. Am J Epidemiol 162:644–653PubMedCrossRefGoogle Scholar
  12. 12.
    Evans JJ, Chua SE, McKenna PJ, Wilson BA (1997) Assessment of the dysexecutive syndrome in schizophrenia. Psychol Med 27:635–646PubMedCrossRefGoogle Scholar
  13. 13.
    Galderisi S, Davidson M, Kahn RS, Mucci A, Boter H, Gheorghe MD, Rybakowski JK, Libiger J, Dollfus S, Lopez-Ibor JJ, Peuskens J, Hranov LG, Fleischhacker WW (2009) Correlates of cognitive impairment in first episode schizophrenia: the EUFEST study. Schizophr Res 115:104–114PubMedCrossRefGoogle Scholar
  14. 14.
    Goff DC, Bottiglieri T, Arning E, Shih V, Freudenreich O, Evins AE, Henderson DC, Baer L, Coyle J (2004) Folate, homocysteine, and negative symptoms in schizophrenia. Am J Psychiatry 161:1705–1708PubMedCrossRefGoogle Scholar
  15. 15.
    Golden CJ (1975) A group version of the Stroop Color and Word Test. J Pers Assess 39:386–388PubMedCrossRefGoogle Scholar
  16. 16.
    Gonzalez-Blanch C, Crespo-Facorro B, Alvarez-Jimenez M, Rodriguez-Sanchez JM, Pelayo-Teran JM, Perez-Iglesias R, Vazquez-Barquero JL (2007) Cognitive dimensions in first-episode schizophrenia spectrum disorders. J Psychiatr Res 41:968–977PubMedCrossRefGoogle Scholar
  17. 17.
    Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330PubMedGoogle Scholar
  18. 18.
    Harvey PD (2009) When does cognitive decline occur in the period prior to the first episode of schizophrenia? Psychiatry (Edgmont) 6:12–14Google Scholar
  19. 19.
    Johnson JL, Ratner PA, Malchy LA, Okoli CT, Procyshyn RM, Bottorff JL, Groening M, Schultz A, Osborne M (2010) Gender-specific profiles of tobacco use among non-institutionalized people with serious mental illness. BMC Psychiatry 10:101PubMedCrossRefGoogle Scholar
  20. 20.
    Kale A, Naphade N, Sapkale S, Kamaraju M, Pillai A, Joshi S, Mahadik S (2010) Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: Implications for altered one-carbon metabolism. Psychiatr Res 175:47–53CrossRefGoogle Scholar
  21. 21.
    Levine J, Agam G, Sela BA, Garver DL, Torrey EF, Belmaker RH (2005) Csf homocysteine is not elevated in schizophrenia. J Neural Transm 112:297–302PubMedCrossRefGoogle Scholar
  22. 22.
    Levine J, Stahl Z, Sela BA, Gavendo S, Ruderman V, Belmaker RH (2002) Elevated homocysteine levels in young male patients with schizophrenia. Am J Psychiatry 159:1790–1792PubMedCrossRefGoogle Scholar
  23. 23.
    Levine J, Stahl Z, Sela BA, Ruderman V, Shumaico O, Babushkin I, Osher Y, Bersudsky Y, Belmaker RH (2006) Homocysteine-reducing strategies improve symptoms in chronic schizophrenic patients with hyperhomocysteinemia. Biol Psychiatry 60:265–269PubMedCrossRefGoogle Scholar
  24. 24.
    Lezak M (1995) Neuropsychological assessment. Oxford University Press, NYGoogle Scholar
  25. 25.
    Ma YY, Shek CC, Wong MC, Yip KC, Ng RM, Nguyen DG, Poon TK (2009) Homocysteine level in schizophrenia patients. Aust N Z J Psychiatry 43:760–765PubMedCrossRefGoogle Scholar
  26. 26.
    Martin-Fernandez JJ, Carles-Dies R, Canizares F, Parra S, Aviles F, Villegas I, Morsi-Hassan O, Fernandez-Barreiro A, Herrero MT (2010) homocysteine and cognitive impairment in Parkinson’s disease. Rev Neurol 50:145–151PubMedGoogle Scholar
  27. 27.
    Muntjewerff JW, Hoogendoorn ML, Kahn RS, Sinke RJ, Den Heijer M, Kluijtmans LA, Blom HJ (2005) Hyperhomocysteinemia, methylenetetrahydrofolate reductase 677tt genotype, and the risk for schizophrenia: a Dutch population based case-control study. Am J Med Genet B Neuropsychiatr Genet 135B:69–72PubMedCrossRefGoogle Scholar
  28. 28.
    Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72:29–39PubMedCrossRefGoogle Scholar
  29. 29.
    O’Donnell C, Stephens T (2005) The significance of homocysteine levels in schizophrenia. Am J Psychiatry 162:1387–1388 author reply 1388–1389PubMedCrossRefGoogle Scholar
  30. 30.
    Obeid R, McCaddon A, Herrmann W (2007) The role of hyperhomocysteinemia and b-vitamin deficiency in neurological and psychiatric diseases. Clin Chem Lab Med 45:1590–1606PubMedGoogle Scholar
  31. 31.
    Osterrieth PA (1944) Contribution a l’étude de la perception et de la memoire (the test of copying a complex figure: a contribution to the study of perception and memory). Archive de Psychologie 30:286–350Google Scholar
  32. 32.
    Oulhaj A, Refsum H, Beaumont H, Williams J, King E, Jacoby R, Smith AD (2010) Homocysteine as a predictor of cognitive decline in Alzheimer’s disease. Int J Geriatr Psychiatry 25:82–90PubMedGoogle Scholar
  33. 33.
    Pelayo-Teran JM, Perez-Iglesias R, Ramirez-Bonilla ML, Gonzalez-Blanch C, Martinez-Garcia O, Pardo-Garcia G, Rodriguez-Sanchez J, Roiz-Santianez R, Tordesillas-Gutierrez D, Mata I, Vazquez-Barquero JL, Crespo-Facorro B (2008) Epidemiological factors associated with treated incidence of first-episode non-affective psychosis in cantabria: insights from the clinical programme on early phases of psychosis. Early Interv Psychiatry 2:178–187PubMedCrossRefGoogle Scholar
  34. 34.
    Petronijevic ND, Radonjic NV, Ivkovic MD, Marinkovic D, Piperski VD, Duricic BM, Paunovic VR (2008) Plasma homocysteine levels in young male patients in the exacerbation and remission phase of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 32:1921–1926PubMedCrossRefGoogle Scholar
  35. 35.
    Reif A, Schneider MF, Kamolz S, Pfuhlmann B (2003) Homocysteinemia in psychiatric disorders: association with dementia and depression, but not schizophrenia in female patients. J Neural Transm 110:1401–1411PubMedCrossRefGoogle Scholar
  36. 36.
    Reitan RM, Wolfson D (1985) The Halstead–Reitan neuropsychological test battery: Therapy and clinical interpretation. Neuropsychological Press, TucsonGoogle Scholar
  37. 37.
    Rethelyi JM, Czobor P, Polgar P, Mersich B, Balint S, Jekkel E, Magyar K, Meszaros A, Fabian A, Bitter I (2011) General and domain-specific neurocognitive impairments in deficit and non-deficit schizophrenia. Eur Arch Psychiatry Clin Neurosci [Epub ahead of print]Google Scholar
  38. 38.
    Rey A (1964) L’examen clinique en psychologie. Presses Universitaires de France, ParisGoogle Scholar
  39. 39.
    Russo C, Morabito F, Luise F, Piromalli A, Battaglia L, Vinci A, Trapani Lombardo V, de Marco V, Morabito P, Condino F, Quattrone A, Aguglia U (2008) Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis. J Neurol 255:64–69PubMedCrossRefGoogle Scholar
  40. 40.
    Segarra R, Ojeda N, Zabala A, Garcia J, Catalan A, Eguiluz JI, Gutierrez M (2011) Similarities in early course among men and women with a first episode of schizophrenia and schizophreniform disorder. Eur Arch Psychiatry Clin Neurosci [Epub ahead of print]Google Scholar
  41. 41.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483PubMedCrossRefGoogle Scholar
  42. 42.
    Shallice T (1982) Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 298:199–209PubMedCrossRefGoogle Scholar
  43. 43.
    Spreen OSE (1990) A compendium of neuropsychological tests. Oxford University Press, New YorkGoogle Scholar
  44. 44.
    Stahl Z, Belmaker RH, Friger M, Levine J (2005) Nutritional and life style determinants of plasma homocysteine in schizophrenia patients. Eur Neuropsychopharmacol 15:291–295PubMedCrossRefGoogle Scholar
  45. 45.
    Susser E, Brown AS, Klonowski E, Allen RH, Lindenbaum J (1998) Schizophrenia and impaired homocysteine metabolism: a possible association. Biol Psychiatry 44:141–143PubMedCrossRefGoogle Scholar
  46. 46.
    Vogel T, Dali-Youcef N, Kaltenbach G, Andres E (2009) Homocysteine, vitamin b12, folate and cognitive functions: a systematic and critical review of the literature. Int J Clin Pract 63:1061–1067PubMedCrossRefGoogle Scholar
  47. 47.
    Wechsler D (1997) Wechsler adult intelligence scale, 3rd edn. The Psychological Corporation, San AntonioGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Rosa Ayesa-Arriola
    • 1
    • 2
  • Rocío Pérez-Iglesias
    • 1
    • 2
  • José Manuel Rodríguez-Sánchez
    • 1
    • 2
  • Ignacio Mata
    • 1
    • 2
  • Elsa Gómez-Ruiz
    • 1
  • Maite García-Unzueta
    • 3
  • Obdulia Martínez-García
    • 1
  • Rafael Tabares-Seisdedos
    • 2
    • 4
  • Jose L. Vázquez-Barquero
    • 1
    • 2
  • Benedicto Crespo-Facorro
    • 1
    • 2
  1. 1.Department of Psychiatry, Marqués de Valdecilla University Hospital, IFIMAV, School of MedicineUniversity of CantabriaSantanderSpain
  2. 2.CIBERSAM, Centro Investigación Biomédica en Red Salud MentalMadridSpain
  3. 3.Department of Endocrinology, Marqués de Valdecilla University HospitalUniversity of CantabriaSantanderSpain
  4. 4.Department of MedicineUniversity of ValenciaValenciaSpain

Personalised recommendations