Progressive pathology is functionally linked to the domains of language and emotion: meta-analysis of brain structure changes in schizophrenia patients

  • Thomas Nickl-Jockschat
  • Frank Schneider
  • Alena D. Pagel
  • Angie R. Laird
  • Peter T. Fox
  • Simon B. Eickhoff
Original Paper

Abstract

Schizophrenia is a neuropsychiatric disorder entailing progressive psychotic, cognitive and affective symptoms. Several imaging studies identified brain structure abnormalities in schizophrenia patients, particularly in fronto-temporal regions and evidence for progressive anatomical changes. Here, we synthesised these findings by quantitative coordinate-based meta-analysis, assessing regions of consistently reported brain structure changes, their physiological functions and the correlation of their likelihood with disease duration. The meta-analysis revealed four significant clusters of convergent grey matter reduction, while one cluster indicated higher grey matter values in patients. A voxel-wise analysis revealed a correlation between grey matter reduction and disease duration in the left anterior insula. Functional characterisation revealed significant association with reward, affective processing and language functions. The current analysis allowed the identification of consistent morphometric changes across a large sample of studies in regions that are associated with neurophysiological functions that are altered as hallmarks of schizophrenia psychopathology. The observation that the location of presumably progressive pathology is functionally linked to language and emotion is well in line with increasing deficits in these domains with disease progression in schizophrenia.

Keywords

Schizophrenia Brain structure Anatomical likelihood estimation Disease duration Structure–function relationship BrainMap 

Supplementary material

406_2011_249_MOESM1_ESM.pdf (64 kb)
Supplementary material 1 (PDF 64 kb)

References

  1. 1.
    Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49(1–2):1–52PubMedCrossRefGoogle Scholar
  2. 2.
    Lawrie SM, Whalley H, Kestelman JN, Abukmeil SS, Byrne M, Hodges A, Rimmington JE, Best JJ, Owens DG, Johnstone EC (1999) Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 353(9146):30–33PubMedCrossRefGoogle Scholar
  3. 3.
    Staal WG, Hulshoff Pol HE, Schnack HG, Hoogendoorn ML, Jellema K, Kahn RS (2000) Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatr 157(3):416–421PubMedCrossRefGoogle Scholar
  4. 4.
    Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatr 10(1):40–68CrossRefGoogle Scholar
  5. 5.
    Ho BC, Andreasen NC, Nopoulos P, Arndt S, Magnotta V, Flaum M (2003) Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatr 60(6):585–594PubMedCrossRefGoogle Scholar
  6. 6.
    van Haren NE, Pol HE, Schnack HG, Cahn W, Brans R, Carati I, Rais M, Kahn RS (2008) Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biol Psychiatr 63(1):106–113CrossRefGoogle Scholar
  7. 7.
    Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780PubMedCrossRefGoogle Scholar
  8. 8.
    Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29(46):14496–14505PubMedCrossRefGoogle Scholar
  9. 9.
    Nickl-Jockschat T, Habel U, Michel TM, Manning J, Laird AR, Fox PT, Schneider F, Eickhoff SB (2011) Brain structure anomalies in autism spectrum disorder-a meta-analysis of VBM studies using anatomic likelihood estimation. Hum Brain Mapp doi: 10.1002/hbm.21299
  10. 10.
    Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926PubMedCrossRefGoogle Scholar
  11. 11.
    Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2011) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp doi: 10.1002/hbm.21186
  12. 12.
    Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36(3):511–521PubMedCrossRefGoogle Scholar
  13. 13.
    Makris N, Meyer JW, Bates JF, Yeterian EH, Kennedy DN, Caviness VS (1999) MRI-Based topographic parcellation of human cerebral white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage 9:1–17PubMedCrossRefGoogle Scholar
  14. 14.
    Laird AR, Lancaster JL, Fox PT (2005) BrainMap: the social evolution of a human brain mapping database. Neuroinformatics 3(1):65–78PubMedCrossRefGoogle Scholar
  15. 15.
    Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757PubMedCrossRefGoogle Scholar
  16. 16.
    Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatr 165(8):1015–1023PubMedCrossRefGoogle Scholar
  17. 17.
    Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, Bullmore E, Fox PT (2008) Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatr 64(9):774–781CrossRefGoogle Scholar
  18. 18.
    Fornito A, Yücel M, Patti J, Wood SJ, Pantelis C (2009) Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res 108(1–3):104–113PubMedCrossRefGoogle Scholar
  19. 19.
    Ford JM, Mathalon DH, Whitfield S, Faustman WO, Roth WT (2002) Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol Psychiatr 51(6):485–492CrossRefGoogle Scholar
  20. 20.
    Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214(5–6):519–534PubMedCrossRefGoogle Scholar
  21. 21.
    Jardri R, Pouchet A, Pins D, Thomas P (2011) Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry 168(1):73–81PubMedCrossRefGoogle Scholar
  22. 22.
    Ball T, Rahm B, Eickhoff SB, Schulze-Bonhage A, Speck O, Mutschler I (2007) Response properties of human amygdala subregions: evidence based on functional MRI combined with probabilistic anatomical maps. PLoS One 2(3):e307PubMedCrossRefGoogle Scholar
  23. 23.
    Morris RW, Weickert CS, Loughland CM (2009) Emotional face processing in schizophrenia. Curr Opin Psychiatr 22(2):140–146CrossRefGoogle Scholar
  24. 24.
    Mitchell RL, Crow TJ (2005) Right hemisphere language functions and schizophrenia: the forgotten hemisphere? Brain 128:963–978PubMedCrossRefGoogle Scholar
  25. 25.
    Lang DJ, Kopala LC, Vandorpe RA, Rui Q, Smith GN, Goghari VM, Lapointe JS, Honer WG (2004) Reduced basal ganglia volumes after switching to olanzapine in chronically treated patients with schizophrenia. Am J Psychiatr 161(10):1829–1836PubMedCrossRefGoogle Scholar
  26. 26.
    McClure RK, Phillips I, Jazayerli R, Barnett A, Coppola R, Weinberger DR (2006) Regional change in brain morphometry in schizophrenia associated with antipsychotic treatment. Psychiatr Res 148(2–3):121–132Google Scholar
  27. 27.
    Behrwind SD, Dafotakis M, Halfter S, Hobusch K, Berthold-Losleben M, Cieslik EC, Eickhoff SB (2011) Executive control in chronic schizophrenia: a perspective from manual stimulus-response compatibility task performance. Behav Brain Res 223(1):24–29PubMedCrossRefGoogle Scholar
  28. 28.
    Schneider F, Gur RC, Gur RE, Shtasel DL (1995) Emotional processing in schizophrenia: neurobehavioral probes in relation to psychopathology. Schizophr Res 17(1):67–75PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thomas Nickl-Jockschat
    • 1
    • 2
  • Frank Schneider
    • 1
    • 2
  • Alena D. Pagel
    • 1
  • Angie R. Laird
    • 3
  • Peter T. Fox
    • 3
  • Simon B. Eickhoff
    • 1
    • 2
    • 4
  1. 1.Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
  2. 2.JARA—Translational Brain MedicineAachen/JuelichGermany
  3. 3.Research Imaging InstituteUniversity of Texas Health Science CenterSan AntonioUSA
  4. 4.Institute of Neuroscience and Medicine-2, Forschungszentrum Jülich GmbHJuelichGermany

Personalised recommendations