Advertisement

Proteome analyses of cultured astrocytes treated with MK-801 and clozapine: similarities with schizophrenia

  • Daniel Martins-de-SouzaEmail author
  • Maria Lebar
  • Christoph W. Turck
Short Communication

Abstract

On the basis of impaired glutamatergic transmission and the potential role of astrocytes in schizophrenia, we treated cultured astrocytes with MK-801, an NMDA-receptor antagonist, to investigate whether the resulting proteome changes are similar to those we found in our earlier proteome analysis of schizophrenia human brain tissue as well as to better comprehend the role of astrocytes in the disorder. Indeed, there are similarities. Furthermore, to verify the efficacy of clozapine and its effect over the proteome, we treated MK-801-treated astrocytes with clozapine. Interestingly, clozapine reversed protein changes induced by MK-801. The treatment of cell cultures with neural transmission agonists and antagonists might provide useful insights about psychiatric disorders.

Keywords

Proteome Proteomics Astrocytes Biomarkers Mass spectrometry Schizophrenia 

Notes

Acknowledgments

We would like to thank Dr. Giuseppina Maccarrone, Dr. Jeeva Varadarajulu, and Dr. Claudia Ditzen for the scientific discussion and advice. We also thank Jacquie Klesing, ELS, for editing assistance with the manuscript. The authors declare no competing interests.

Supplementary material

406_2010_166_MOESM1_ESM.doc (29 kb)
Biological processes of the proteins found differentially expressed after the various treatments (DOC 29 kb)

References

  1. 1.
    Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6:3414–3425PubMedCrossRefGoogle Scholar
  2. 2.
    Beasley CL, Honavar M, Everall IP, Cotter D (2009) Two-dimensional assessment of cytoarchitecture in the superior temporal white matter in schizophrenia, major depressive disorder and bipolar disorder. Schizophr Res 115(2–3):156–162PubMedCrossRefGoogle Scholar
  3. 3.
    Behrens S, Gattaz WF (1992) MK-801 induced stereotypies in rats are decreased by haloperidol and increased by diazepam. J Neural Transm Gen Sect 90(3):219–224PubMedCrossRefGoogle Scholar
  4. 4.
    Bernstein HG, Steiner J, Bogerts B (2009) Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 9(7):1059–1071PubMedCrossRefGoogle Scholar
  5. 5.
    Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB (2000) 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 275(37):28421–28427PubMedCrossRefGoogle Scholar
  6. 6.
    Coan EJ, Saywood W, Collingridge GL (1987) MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neurosci Lett 80(1):111–114PubMedCrossRefGoogle Scholar
  7. 7.
    English JA, Dicker P, Föcking M, Dunn MJ, Cotter DR (2009) 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 9(12):3368–3382PubMedCrossRefGoogle Scholar
  8. 8.
    Eyjolfsson EM, Brenner E, Kondziella D, Sonnewald U (2006) Repeated injection of MK801: an animal model of schizophrenia? Neurochem Int 48(6–7):541–546PubMedGoogle Scholar
  9. 9.
    Fiacco TA, Agulhon C, McCarthy KD (2009) Sorting out astrocyte physiology from pharmacology. Annu Rev Pharmacol Toxicol 49:151–174PubMedCrossRefGoogle Scholar
  10. 10.
    Hoffman DC (1992) Typical and atypical neuroleptics antagonize MK-801-induced locomotion and stereotypy in rats. J Neural Transm Gen Sect 89(1–2):1–10PubMedCrossRefGoogle Scholar
  11. 11.
    Kondziella D, Brenner E, Eyjolfsson EM, Markinhuhta KR, Carlsson ML, Sonnewald U (2006) Glial-neuronal interactions are impaired in the schizophrenia model of repeated MK801 exposure. Neuropsychopharmacology 31(9):1880–1887PubMedCrossRefGoogle Scholar
  12. 12.
    Martins-de-Souza D, Menezes de Oliveira B, dos Santos Farias A, Horiuchi RS, Crepaldi Domingues C, de Paula E, Marangoni S, Gattaz WF, Dias-Neto E, Camillo Novello J (2007) The use of ASB-14 in combination with CHAPS is the best for solubilization of human brain proteins for two-dimensional gel electrophoresis. Brief Funct Genomic Proteomic 6(1):70–75PubMedCrossRefGoogle Scholar
  13. 13.
    Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, Souza GH, Marangoni S, Novello JC, Turck CW, Dias-Neto E (2009) Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 43(11):978–986PubMedCrossRefGoogle Scholar
  14. 14.
    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259(3):151–163PubMedCrossRefGoogle Scholar
  15. 15.
    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC, Maccarrone G, Turck CW, Dias-Neto E (2009) Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm 116(3):275–289PubMedCrossRefGoogle Scholar
  16. 16.
    Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW, Dias-Neto E (2009) Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation. BMC Psychiatry 9:17PubMedCrossRefGoogle Scholar
  17. 17.
    Martins-de-Souza D, Schmitt A, Röder R, Lebar M, Schneider-Axmann T, Falkai P, Turck CW (2010a) Sex-specific proteome differences in the anterior cingulate cortex of schizophrenia. J Psychiatr Res 44(14):989–991PubMedCrossRefGoogle Scholar
  18. 18.
    Martins-de-Souza D, Maccarrone G, Wobrock T et al (2010b) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers for schizophrenia. J Psychiatr Res. doi: 10.1016/j.jpsychires.2010.04.014
  19. 19.
    Martins-De-Souza D, Dias-Neto E, Schmitt A, Falkai P, Gormanns P, Maccarrone G, Turck CW, Gattaz WF (2010) Proteome analysis of schizophrenia brain tissue. World J Biol Psychiatry 11(2):110–120PubMedCrossRefGoogle Scholar
  20. 20.
    Paulson L, Martin P, Ljung E, Blennow K, Davidsson P (2007) Proteome analysis after co-administration of clozapine or haloperidol to MK-801-treated rats. J Neural Transm 114(7):885–891PubMedCrossRefGoogle Scholar
  21. 21.
    Paulson L, Martin P, Nilsson CL, Ljung E, Westman-Brinkmalm A, Blennow K, Davidsson P (2004) Comparative proteome analysis of thalamus in MK-801-treated rats. Proteomics 4(3):819–825PubMedCrossRefGoogle Scholar
  22. 22.
    Paulson L, Martin P, Persson A, Nilsson CL, Ljung E, Westman-Brinkmalm A, Eriksson PS, Blennow K, Davidsson P (2003) Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats. J Neurosci Res 71(4):526–533PubMedCrossRefGoogle Scholar
  23. 23.
    Paz RD, Tardito S, Atzori M, Tseng KY (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 18(11):773–786PubMedCrossRefGoogle Scholar
  24. 24.
    Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffi n JL et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697, 643Google Scholar
  25. 25.
    Rung JP, Carlsson A, Rydén Markinhuhta K, Carlsson ML (2005) (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29(5):827–832PubMedCrossRefGoogle Scholar
  26. 26.
    Russo-Marie F (1999) Annexin V and phospholipid metabolism. Clin Chem Lab Med 37(3):287–291PubMedCrossRefGoogle Scholar
  27. 27.
    Schmitt A, Koschel J, Zink M, Bauer M, Sommer C, Frank J, Treutlein J, Schulze T, Schneider-Axmann T, Parlapani E, Rietschel M, Falkai P, Henn FA (2010) Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 260(2):101–111PubMedCrossRefGoogle Scholar
  28. 28.
    Sivagnanasundaram S, Crossett B, Dedova I, Cordwell S, Matsumoto I (2007) Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin Appl 1:1291–1305PubMedCrossRefGoogle Scholar
  29. 29.
    Stone JM (2009) Imaging the glutamate system in humans: relevance to drug discovery for schizophrenia. Curr Pharm Des 15(22):2594–2602PubMedCrossRefGoogle Scholar
  30. 30.
    Tiedtke PI, Bischoff C, Schmidt WJ (1990) MK-801-induced stereotypy and its antagonism by neuroleptic drugs. J Neural Transm Gen Sect 81(3):173–182PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Daniel Martins-de-Souza
    • 1
    • 2
    • 3
    Email author
  • Maria Lebar
    • 1
  • Christoph W. Turck
    • 1
  1. 1.Max Planck Institute of PsychiatryMunichGermany
  2. 2.Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Faculdade de Medicina da USPSão PauloBrazil
  3. 3.Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK

Personalised recommendations