Advertisement

The effect of the COMT val158met polymorphism on neural correlates of semantic verbal fluency

  • Axel Krug
  • Valentin Markov
  • Abigail Sheldrick
  • Sören Krach
  • Andreas Jansen
  • Klaus Zerres
  • Thomas Eggermann
  • Tony Stöcker
  • N. Jon Shah
  • Tilo Kircher
Original Paper

Abstract

Variation in the val158met polymorphism of the COMT gene has been found to be associated with cognitive performance. In functional neuroimaging studies, this dysfunction has been linked to signal changes in prefrontal areas. Given the complex modulation and functional heterogeneity of frontal lobe systems, further specification of COMT gene-related phenotypes differing in prefrontally mediated cognitive performance are of major interest. Eighty healthy individuals (54 men, 26 women; mean age 23.3 years) performed an overt semantic verbal fluency task while brain activation was measured with functional magnetic resonance imaging (fMRI). COMT val158met genotype was determined and correlated with brain activation measured with fMRI during the task. Although there were no differences in performance, brain activation in the left inferior frontal gyrus [Brodmann area 10] was positively correlated with the number of val alleles in the COMT gene. COMT val158met status modulates brain activation during the language production on a semantic level in an area related to executive functions.

Keywords

COMT fMRI Verbal fluency Inferior frontal gyrus BA 10 

Notes

Acknowledgments

This work was supported by the Federal Ministry of Education and Research (Brain Imaging Centre West, 01GO0204). SK and AJ are supported by The Federal Ministry of Education and Research (01GW0751).

Conflict of interest statement

All authors report no conflict of interest.

References

  1. 1.
    Aguilera M, Barrantes-Vidal N, Arias B, Moya J, Villa H, Ibanez MI, Ruiperez MA, Ortet G, Fananas L (2008) Putative role of the COMT gene polymorphism (Val158Met) on verbal working memory functioning in a healthy population. Am J Med Genet B Neuropsychiatr Genet 147B:898–902CrossRefPubMedGoogle Scholar
  2. 2.
    Barnett JH, Scoriels L, Munafo MR (2008) Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry 64:137–144CrossRefPubMedGoogle Scholar
  3. 3.
    Basho S, Palmer ED, Rubio MA, Wulfeck B, Muller RA (2007) Effects of generation mode in fMRI adaptations of semantic fluency: paced production and overt speech. Neuropsychologia 45:1697–1706CrossRefPubMedGoogle Scholar
  4. 4.
    Bertolino A, Caforio G, Blasi G, De Candia M, Latorre V, Petruzzella V, Altamura M, Nappi G, Papa S, Callicott JH, Mattay VS, Bellomo A, Scarabino T, Weinberger DR, Nardini M (2004) Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 161:1798–1805CrossRefPubMedGoogle Scholar
  5. 5.
    Bertolino A, Rubino V, Sambataro F, Blasi G, Latorre V, Fazio L, Caforio G, Petruzzella V, Kolachana B, Hariri A, Meyer-Lindenberg A, Nardini M, Weinberger DR, Scarabino T (2006) Prefrontal-hippocampal coupling during memory processing is modulated by COMT val158met genotype. Biol Psychiatry 60:1250–1258CrossRefPubMedGoogle Scholar
  6. 6.
    Blasi G, Mattay VS, Bertolino A, Elvevag B, Callicott JH, Das S, Kolachana BS, Egan MF, Goldberg TE, Weinberger DR (2005) Effect of catechol-O-methyltransferase val158met genotype on attentional control. J Neurosci 25:5038–5045CrossRefPubMedGoogle Scholar
  7. 7.
    Braver TS, Bongiolatti SR (2002) The role of frontopolar cortex in subgoal processing during working memory. Neuroimage 15:523–536CrossRefPubMedGoogle Scholar
  8. 8.
    Burgess PW, Veitch E, y Costello A, Shallice T (2000) The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 38:848–863CrossRefPubMedGoogle Scholar
  9. 9.
    Burgess PW, Quayle A, Frith CD (2001) Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia 39:545–555CrossRefPubMedGoogle Scholar
  10. 10.
    Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47CrossRefPubMedGoogle Scholar
  11. 11.
    Christoff K, Gabrieli JDE (2000) The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28:168–186Google Scholar
  12. 12.
    Christoff K, Prabhakaran V, Dorfman J, Zhao Z, Kroger JK, Holyoak KJ, Gabrieli JD (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage 14:1136–1149CrossRefPubMedGoogle Scholar
  13. 13.
    Drabant EM, Hariri AR, Meyer-Lindenberg A, Munoz KE, Mattay VS, Kolachana BS, Egan MF, Weinberger DR (2006) Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Arch Gen Psychiatry 63:1396–1406CrossRefPubMedGoogle Scholar
  14. 14.
    Ehlis AC, Reif A, Herrmann MJ, Lesch KP, Fallgatter AJ (2007) Impact of catechol-O-methyltransferase on prefrontal brain functioning in schizophrenia spectrum disorders. Neuropsychopharmacology 32:162–170CrossRefPubMedGoogle Scholar
  15. 15.
    Glatt SJ, Faraone SV, Tsuang MT (2003) Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case–control and family-based studies. Am J Psychiatry 160:469–476CrossRefPubMedGoogle Scholar
  16. 16.
    Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS, Goldman D, Weinberger DR (2003) Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 60:889–896CrossRefPubMedGoogle Scholar
  17. 17.
    Hirshorn EA, Thompson-Schill SL (2006) Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia 44:2547–2557CrossRefPubMedGoogle Scholar
  18. 18.
    Ho BC, Wassink TH, O’Leary DS, Sheffield VC, Andreasen NC (2005) Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol Psychiatry 10(229):287–298CrossRefGoogle Scholar
  19. 19.
    Kircher T, Whitney C, Krings T, Huber W, Weis S (2008) Hippocampal dysfunction during free word association in male patients with schizophrenia. Schizophr Res 101:242–255CrossRefPubMedGoogle Scholar
  20. 20.
    Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–151CrossRefPubMedGoogle Scholar
  21. 21.
    Koechlin E, Corrado G, Pietrini P, Grafman J (2000) Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc Natl Acad Sci USA 97:7651–7656CrossRefPubMedGoogle Scholar
  22. 22.
    Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12:477–485CrossRefPubMedGoogle Scholar
  23. 23.
    Krug A, Markov V, Eggermann T, Krach S, Zerres K, Stocker T, Shah NJ, Schneider F, Nothen MM, Treutlein J, Rietschel M, Kircher T (2008) Genetic variation in the schizophrenia-risk gene neuregulin1 correlates with differences in frontal brain activation in a working memory task in healthy individuals. Neuroimage 42:1569–1576CrossRefPubMedGoogle Scholar
  24. 24.
    Lehrl S, Triebig G, Fischer B (1995) Multiple choice vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurol Scand 91:335–345CrossRefPubMedGoogle Scholar
  25. 25.
    Leung HC, Gore JC, Goldman-Rakic PS (2005) Differential anterior prefrontal activation during the recognition stage of a spatial working memory task. Cereb Cortex 15:1742–1749CrossRefPubMedGoogle Scholar
  26. 26.
    Maier W, Hofgen B, Zobel A, Rietschel M (2005) Genetic models of schizophrenia and bipolar disorder: overlapping inheritance or discrete genotypes? Eur Arch Psychiatry Clin Neurosci 255:159–166CrossRefPubMedGoogle Scholar
  27. 27.
    Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159:652–654CrossRefPubMedGoogle Scholar
  28. 28.
    Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 100:6186–6191CrossRefPubMedGoogle Scholar
  29. 29.
    McIntosh AM, Baig BJ, Hall J, Job D, Whalley HC, Lymer GK, Moorhead TW, Owens DG, Miller P, Porteous D, Lawrie SM, Johnstone EC (2007) Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis. Biol Psychiatry 61:1127–1134CrossRefPubMedGoogle Scholar
  30. 30.
    Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R, Weinberger DR, Berman KF (2005) Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 8:594–596CrossRefPubMedGoogle Scholar
  31. 31.
    Meyer-Lindenberg A, Nichols T, Callicott JH, Ding J, Kolachana B, Buckholtz J, Mattay VS, Egan M, Weinberger DR (2006) Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 11:867–877, 797CrossRefPubMedGoogle Scholar
  32. 32.
    Minzenberg MJ, Xu K, Mitropoulou V, Harvey PD, Finch T, Flory JD, New AS, Goldman D, Siever LJ (2006) Catechol-O-methyltransferase Val158Met genotype variation is associated with prefrontal-dependent task performance in schizotypal personality disorder patients and comparison groups. Psychiatr Genet 16:117–124CrossRefPubMedGoogle Scholar
  33. 33.
    Nunokawa A, Watanabe Y, Muratake T, Kaneko N, Koizumi M, Someya T (2007) No associations exist between five functional polymorphisms in the catechol-O-methyltransferase gene and schizophrenia in a Japanese population. Neurosci Res 58:291–296CrossRefPubMedGoogle Scholar
  34. 34.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  35. 35.
    Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25:46–59CrossRefPubMedGoogle Scholar
  36. 36.
    Ramnani N, Owen AM (2004) Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci 5:184–194CrossRefPubMedGoogle Scholar
  37. 37.
    Rasser PE, Johnston P, Lagopoulos J, Ward PB, Schall U, Thienel R, Bender S, Toga AW, Thompson PM (2005) Functional MRI BOLD response to Tower of London performance of first-episode schizophrenia patients using cortical pattern matching. Neuroimage 26:941–951CrossRefPubMedGoogle Scholar
  38. 38.
    Rosa A, Peralta V, Cuesta MJ, Zarzuela A, Serrano F, Martinez-Larrea A, Fananas L (2004) New evidence of association between COMT gene and prefrontal neurocognitive function in healthy individuals from sibling pairs discordant for psychosis. Am J Psychiatry 161:1110–1112CrossRefPubMedGoogle Scholar
  39. 39.
    Sanders AR, Duan J, Levinson DF, Shi J, He D, Hou C, Burrell GJ, Rice JP, Nertney DA, Olincy A, Rozic P, Vinogradov S, Buccola NG, Mowry BJ, Freedman R, Amin F, Black DW, Silverman JM, Byerley WF, Crowe RR, Cloninger CR, Martinez M, Gejman PV (2008) No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 165:497–506CrossRefPubMedGoogle Scholar
  40. 40.
    Schneider F, Habel U, Reske M, Kellermann T, Stocker T, Shah NJ, Zilles K, Braus DF, Schmitt A, Schlosser R, Wagner M, Frommann I, Kircher T, Rapp A, Meisenzahl E, Ufer S, Ruhrmann S, Thienel R, Sauer H, Henn FA, Gaebel W (2007) Neural correlates of working memory dysfunction in first-episode schizophrenia patients: an fMRI multi-center study. Schizophr Res 89:198–210CrossRefPubMedGoogle Scholar
  41. 41.
    Sheldrick AJ, Krug A, Markov V, Leube D, Michel TM, Zerres K, Eggermann T, Kircher T (2008) Effect of COMT val158met genotype on cognition and personality. Eur Psychiatry 23:385–389CrossRefPubMedGoogle Scholar
  42. 42.
    Slotnick SD, Moo LR, Segal JB, Hart J Jr (2003) Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Brain Res Cogn Brain Res 17:75–82CrossRefPubMedGoogle Scholar
  43. 43.
    Stefanis NC, van Os J, Avramopoulos D, Smyrnis N, Evdokimidis I, Stefanis CN (2005) Effect of COMT Val158Met polymorphism on the continuous performance test, identical pairs version: tuning rather than improving performance. Am J Psychiatry 162:1752–1754CrossRefPubMedGoogle Scholar
  44. 44.
    Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  45. 45.
    Tan HY, Chen Q, Goldberg TE, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH (2007) Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory. J Neurosci 27:13393–13401CrossRefPubMedGoogle Scholar
  46. 46.
    Wagner AD, Desmond JE, Glover GH, Gabrieli JD (1998) Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain 121 (Pt 10):1985–2002Google Scholar
  47. 47.
    Walter H, Vasic N, Hose A, Spitzer M, Wolf RC (2007) Working memory dysfunction in schizophrenia compared to healthy controls and patients with depression: evidence from event-related fMRI. Neuroimage 35:1551–1561CrossRefPubMedGoogle Scholar
  48. 48.
    Whitney C, Weis S, Krings T, Huber W, Kircher T (2009) Task-dependent Modulations of prefrontal and hippocampal activity during intrinsic word production. J Cogn Neurosci 4:697–712CrossRefGoogle Scholar
  49. 49.
    Williams HJ, Glaser B, Williams NM, Norton N, Zammit S, MacGregor S, Kirov GK, Owen MJ, O’Donovan MC (2005) No association between schizophrenia and polymorphisms in COMT in two large samples. Am J Psychiatry 162:1736–1738CrossRefPubMedGoogle Scholar
  50. 50.
    Wonodi I, Stine OC, Mitchell BD, Buchanan RW, Thaker GK (2003) Association between Val108/158 Met polymorphism of the COMT gene and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 120B:47–50CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Axel Krug
    • 1
  • Valentin Markov
    • 2
  • Abigail Sheldrick
    • 2
  • Sören Krach
    • 1
  • Andreas Jansen
    • 1
  • Klaus Zerres
    • 3
  • Thomas Eggermann
    • 3
  • Tony Stöcker
    • 4
  • N. Jon Shah
    • 4
    • 5
    • 6
  • Tilo Kircher
    • 1
  1. 1.Department of Psychiatry and PsychotherapyPhilipps-University MarburgMarburgGermany
  2. 2.Department of Psychiatry and PsychotherapyRWTH Aachen UniversityAachenGermany
  3. 3.Institute of Human GeneticsRWTH Aachen UniversityAachenGermany
  4. 4.Institute of Neuroscience and Biophysics 3, MedicineResearch Center JülichJülichGermany
  5. 5.Central Service Facility “Functional Imaging” at the ICCR-BIOMATRWTH Aachen UniversityAachenGermany
  6. 6.Institute of PhysicsUniversity of DortmundDortmundGermany

Personalised recommendations