A psychoneuroimmunological perspective to Emil Kraepelins dichotomy

Schizophrenia and major depression as inflammatory CNS disorders
  • Norbert MüllerEmail author
  • Markus J. Schwarz


The Kraepelinian classification of psychiatric disorders, in particular the dichotomy of dementia praecox and manic-depressive psychosis is under discussion since a long time. In recent years, not only new research in the fields of psychopathology and clinical outcome, but also findings of biological markers in the areas of neurophysiology, neuroendocrinology, psychoneuroimmunology, genetics, or psychopharmacology show a big overlap between both groups of disorders. This overlap of symptoms and markers of both disorders intensified the discussion and the proposals for new criteria for the classification of psychiatric disorders. By means of findings from the field of psychoneuroimmunology and inflammation it will be shown that different pathological mechanisms in depression and schizophrenia may lead to the same final common pathway of inflammation. These mechanisms include the immunological balance between type-1 and type-2 immune activation which influences the tryptophan-degradating enzyme indoleamine 2,3-dioxygenase (IDO) in the CNS in opposite ways, leading to an altered availability of tryptophan and serotonin, and a disturbance of the kynurenine metabolism with an imbalance in favor of the production of the NMDA-receptor agonist quinolinic acid in depression and of the NMDA-receptor antagonist kynurenic acid in schizophrenia. In both disorders, however, an increased production of prostaglandin E2 and increased expression of cyclo-oxygenase-2 reflect a slight inflammatory process taking place probably in different regions of the CNS. Albeit this common inflammatory pathway—inflammation is a general pathway of the body as answer to a lot of different noxae and pathogens—the Kraepelinian dichotomy is important with respect to pathological mechanisms and therapeutic approaches, not only for further research in understanding the exact pathological mechanisms but also for the development of preventive strategies in high risk individuals and in patients. Opposite pathways regarding the immune activation, the neurotoxic versus neuroprotective kynurenine metabolites and the agonistic versus antagonistic effects on the NMDA receptor and the glutamatergic neurotransmission show despite a possible therapeutic advantage of anti-inflammatory therapy in both disorders that the Kraepelinian dichotomy still has a significant value from a biologic-psychiatric point of view.

Key words

psychoneuroimmunology schizophrenia major depression dichotomy dlutamare 



The authors have no conflict of interest to declare.


  1. 1.
    Alberati GD, Ricciardi CP, Kohler C, Cesura AM (1996) Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells. J Neurochem 66:996–1004Google Scholar
  2. 2.
    Altamura CA, Mauri MC, Ferrara A, Moro AR, D’Andrea G, Zamberlan F (1993) Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatr 150:1731–1733PubMedGoogle Scholar
  3. 3.
    Bechter K, Schreiner V, Herzog S, Breitinger N, Wollinsky KH, Brinkmeier H, Aulkemeyer P, Weber F, Schuttler R (2003) CSF filtration as experimental therapy in therapyresistant psychoses in borna disease virus-seropositive patients. Psychiatr Prax 30:216–220PubMedGoogle Scholar
  4. 4.
    Bengtsson BO, Zhu J, Thorell LH, Olsson T, Link H, Walinder J (1992) Effects of zimeldine and its metabolites, clomipramine, imipramine and maprotiline in experimental allergic neuritis in Lewis rats. J Neuroimmunol 39:109–122PubMedCrossRefGoogle Scholar
  5. 5.
    Bonaccorso S, Lin AH, Verkerk R, Van Hunsel F, Libbrecht I, Scharpe S, DeClerck L, Biondi M, Janca A, Maes M (1998) Immune markers in fibromyalgia: comparison with major depressed patients and normal volunteers. J Affect Disord 48:75–82PubMedCrossRefGoogle Scholar
  6. 6.
    Bonaccorso S, Marino V, Puzella A, Pasquini M, Biondi M, Artini M, Almerighi C, Verkerk R, Meltzer H, Maes M (2002) Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 22:86–90PubMedCrossRefGoogle Scholar
  7. 7.
    Braun D, Longman RS, Albert ML (2005) A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106:2375–2381PubMedCrossRefGoogle Scholar
  8. 8.
    Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP, Susser ES (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatr 61:774–780PubMedCrossRefGoogle Scholar
  9. 9.
    Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH (2001) Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatr 58:1032–1037PubMedCrossRefGoogle Scholar
  10. 10.
    Calabrese JR, Skwerer RG, Barna B, Gulledge AD, Valenzuela R, Butkus A, Subichin S, Krupp NE (1986) Depression, immunocompetence, and prostaglandins of the E series. Psychiatry Res 17:41–47PubMedCrossRefGoogle Scholar
  11. 11.
    Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260PubMedCrossRefGoogle Scholar
  12. 12.
    Casolini P, Catalani A, Zuena AR, Angelucci L (2002) Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res 68:337–343PubMedCrossRefGoogle Scholar
  13. 13.
    Cazzullo CL, Scarone S, Grassi B, Vismara C, Trabattoni D, Clerici M, Clerici M (1998) Cytokines production in chronic schizophrenia patients with or without paranoid behaviour. Prog Neuropsychopharmacol Biol Psychiatr 22:947–957CrossRefGoogle Scholar
  14. 14.
    Chen Q, Surmeier DJ, Reiner A (1999) NMDA and non-NMDA receptor-mediated excitotoxicity are potentiated in cultured striatal neurons by prior chronic depolarization. Exp Neurol 159:283–296PubMedCrossRefGoogle Scholar
  15. 15.
    Collantes-Esteves E, Fernandez-Perrez Ch (2003) Improved self-control of ostheoarthritis pain and self-reported health status in non-responders to celecoxib switched to rofecoxib: results of PAVIA, an open-label post-marketing survey in spain. Curr Med Res Opin 19:402–410CrossRefGoogle Scholar
  16. 16.
    Coppen A, Swade C (1988) 5-HT and depression: the present position. In: Briley M, Fillion G (eds) New concepts in depression. MacMillan Press, London, pp 120–136Google Scholar
  17. 17.
    Coric V, Milanovic S, Wasylink S, Patel P, Malison R, Krystal JH (2003) Beneficial effects of the antiglutamatergic agent riluzole in a patient diagnosed with obsessive-compulsive disorder and major depressive disorder. Psychopharmacology (Berl) 167:219–220Google Scholar
  18. 18.
    Craddock N, Owen MJ (2007) Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatr 6:20–27Google Scholar
  19. 19.
    Crane GE (1959) Cyloserine as an antidepressant agent. Am J Psychiatr 115:1025–1026PubMedGoogle Scholar
  20. 20.
    Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun 15:7–24PubMedCrossRefGoogle Scholar
  21. 21.
    Das I, Khan NS (1998) Increased arachidonic acid induced platelet chemiluminescence indicates cyclooxygenase overactivity in schizophrenic subjects. Prostaglandins Leukot Essent Fatty Acids 58:165–168PubMedCrossRefGoogle Scholar
  22. 22.
    Duch DS, Woolf JH, Nichol CA, Davidson JR, Garbutt JC (1984) Urinary excretion of biopterin and neopterin in psychiatric disorders. Psychiatr Res 11:83–89CrossRefGoogle Scholar
  23. 23.
    Dunbar PR, Hill J, Neale TJ, Mellsop GW (1992) Neopterin measurement provides evidence of altered cell-mediated immunity in patients with depression, but not with schizophrenia. Psychol Med 22:1051–1057PubMedGoogle Scholar
  24. 24.
    Fedele E, Foster AC (1993) An evaluation of the role of extracellular amino acids in the delayed neurodegeneration induced by quinolinic acid in the rat striatum. Neuroscience 52:911–917PubMedCrossRefGoogle Scholar
  25. 25.
    Fertuzinhos SM, Oliveira JR, Nishimura AL, Pontual D, Carvalho DR, Sougey EB, Otto PA, Zatz M (2004) Analysis of IL-1alpha, IL-1beta, and IL-1RA [correction of IL-RA] polymorphisms in dysthymia. J Mol Neurosci 22:251–256PubMedCrossRefGoogle Scholar
  26. 26.
    Gattaz WF, Abrahao AL, Foccacia R (2004) Childhood meningitis, brain maturation and the risk of psychosis. Eur Arch Psychiatry Clin Neurosci 254:23–26PubMedCrossRefGoogle Scholar
  27. 27.
    Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24:242–248PubMedCrossRefGoogle Scholar
  28. 28.
    Haack M, Hinze-Selch D, Fenzel T, Kraus T, Kuhn M, Schuld A, Pollmacher T (1999) Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J Psychiatr Res 33:407–418PubMedCrossRefGoogle Scholar
  29. 29.
    Herbert TB, Cohen S (1993) Depression and immunity: a meta-analytic review. Psychol Bull 113:472–486PubMedCrossRefGoogle Scholar
  30. 30.
    Heyes MP, Brew BJ, Martin A, Price RW, Salazar AM, Sidtis JJ, Yergey JA, Mouradian MM, Sadler AE, Keilp J (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol 29:202–209PubMedCrossRefGoogle Scholar
  31. 31.
    Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115:1249–1273PubMedCrossRefGoogle Scholar
  32. 32.
    Heyes MP, Saito K, Lackner A, Wiley CA, Achim CL, Markey SP (1998) Sources of the neurotoxin quinolinic acid in the brain of HIV-1-infected patients and retrovirus-infected macaques. FASEB J 12:881–896PubMedGoogle Scholar
  33. 33.
    Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473PubMedGoogle Scholar
  34. 34.
    Hu F, Wang X, Pace TW, Wu H, Miller AH (2005) Inhibition of COX-2 by celecoxib enhances glucocorticoid receptor function. Mol Psychiatry 10:426–428PubMedCrossRefGoogle Scholar
  35. 35.
    Huber TJ, Dietrich DE, Emrich HM (1999) Possible use of amantadine in depression. Pharmacopsychiatry 32:47–55PubMedGoogle Scholar
  36. 36.
    Irwin M (1999) Immune correlates of depression. Adv Exp Med Biol 461:1–24PubMedCrossRefGoogle Scholar
  37. 37.
    Jun TY, Pae CU, Hoon H, Chae JH, Bahk WM, Kim KS, Serretti A (2003) Possible association between—G308A tumour necrosis factor-alpha gene polymorphism and major depressive disorder in the Korean population. Psychiatr Genet 13:179–181PubMedCrossRefGoogle Scholar
  38. 38.
    Kaiya H, Uematsu M, Ofuji M, Nishida A, Takeuchi K, Nozaki M, Idaka E (1989) Elevated plasma prostaglandin E2 levels in schizophrenia. J Neural Transm 77:39–46PubMedCrossRefGoogle Scholar
  39. 39.
    Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328PubMedCrossRefGoogle Scholar
  40. 40.
    Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20:379–382PubMedCrossRefGoogle Scholar
  41. 41.
    Kim JS, Schmid-Burgk W, Claus D, Kornhuber HH (1982) Increased serum glutamate in depressed patients. Arch Psychiatr Nervenkr 232:299–304PubMedCrossRefGoogle Scholar
  42. 42.
    Koponen H, Rantakallio P, Veijola J, Jones P, Jokelainen J, Isohanni M (2004) Childhood central nervous system infections and risk for schizophrenia. Eur Arch Psychiatry Clin Neurosci 254:9–13PubMedCrossRefGoogle Scholar
  43. 43.
    Körschenhausen DA, Hampel HJ, Ackenheil M, Penning R, Müller N (1996) Fibrin degradation products in post mortem brain tissue of schizophrenics: a possible marker for underlying inflammatory processes. Schizophr Res 19:103–109PubMedCrossRefGoogle Scholar
  44. 44.
    Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214PubMedGoogle Scholar
  45. 45.
    Kudoh A, Takahira Y, Katagai H, Takazawa T (2002) Small-dose ketamine improves the postoperative state of depressed patients. Anesth Analg 95:114–8, tablePubMedCrossRefGoogle Scholar
  46. 46.
    Kugaya A, Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 10:808–819PubMedGoogle Scholar
  47. 47.
    Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, Nitsch R, Bechmann I (2005) Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J 19:1347–1349PubMedGoogle Scholar
  48. 48.
    Lapin IP (2003) Neurokynurenines (NEKY) as common neurochemical links of stress and anxiety. Adv Exp Med Biol 527:121–125PubMedGoogle Scholar
  49. 49.
    Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240PubMedCrossRefGoogle Scholar
  50. 50.
    Lidberg L, Belfrage H, Bertilsson L, Evenden MM, Asberg M (2000) Suicide attempts and impulse control disorder are related to low cerebrospinal fluid 5-HIAA in mentally disordered violent offenders. Acta Psychiatr Scand 101:395–402PubMedCrossRefGoogle Scholar
  51. 51.
    Linnoila M, Whorton AR, Rubinow DR, Cowdry RW, Ninan PT, Waters RN (1983) CSF prostaglandin levels in depressed and schizophrenic patients. Arch Gen Psychiatry 40:405–406PubMedGoogle Scholar
  52. 52.
    Litherland SA, Xie XT, Hutson AD, Wasserfall C, Whittaker DS, She JX, Hofig A, Dennis MA, Fuller K, Cook R, Schatz D, Moldawer LL, Clare-Salzler MJ (1999) Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J Clin Invest 104:515–523PubMedCrossRefGoogle Scholar
  53. 53.
    Maes M, Meltzer HY, Bosmans E, Bergmans R, Vandoolaeghe E, Ranjan R, Desnyder R (1995) Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 34:301–309PubMedCrossRefGoogle Scholar
  54. 54.
    Maes M, Meltzer HY, Buckley P, Bosmans E (1995) Plasma-soluble interleukin-2 and transferrin receptor in schizophrenia and major depression. Eur Arch Psychiatry Clin Neurosci 244:325–329PubMedCrossRefGoogle Scholar
  55. 55.
    Maes M, Scharpe S, Meltzer HY, Bosmans E, Suy E, Calabrese J, Cosyns P (1993) Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Res 49:11–27PubMedCrossRefGoogle Scholar
  56. 56.
    Maes M, Scharpe S, Meltzer HY, Okayli G, Bosmans E, D’Hondt P, Vanden Bossche BV, Cosyns P (1994) Increased neopterin and interferon-gamma secretion and lower availability of l-tryptophan in major depression: further evidence for an immune response. Psychiatry Res 54:143–160PubMedCrossRefGoogle Scholar
  57. 57.
    Maj J, Rogoz Z, Skuza G, Sowinska H (1992) Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacol 2:37–41PubMedCrossRefGoogle Scholar
  58. 58.
    Mann JJ, Malone KM (1997) Cerebrospinal fluid amines and higher-lethality suicide attempts in depressed inpatients. Biol Psychiatry 41:162–171PubMedCrossRefGoogle Scholar
  59. 59.
    Martin A, Heyes MP, Salazar AM, Kampen DL, Williams J, Law WA, Coats ME, Markey SP (1992) Progressive slowing of reaction time and increasing cerebrospinal fluid concentrations of quinolinic acid in HIV-infected individuals. J Neuropsychiatry Clin Neurosci 4:270–279PubMedGoogle Scholar
  60. 60.
    Martin A, Heyes MP, Salazar AM, Law WA, Williams J (1993) Impaired motor skill learning, slowed reaction time, and elevated cerebrospinal fluid quinilonic acid in a sub-group of HIV-infected individuals. Neuropsychology 7:147–149CrossRefGoogle Scholar
  61. 61.
    Martin P, Carlsson ML, Hjorth S (1998) Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. Neuroreport 9:2985–2988PubMedCrossRefGoogle Scholar
  62. 62.
    Matussek N (1966) Neurobiologie und depression. Med Monatsschr 3:109–112Google Scholar
  63. 63.
    Mauri MC, Ferrara A, Boscati L, Bravin S, Zamberlan F, Alecci M, Invernizzi G (1998) Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 37:124–129PubMedCrossRefGoogle Scholar
  64. 64.
    Mikova O, Yakimova R, Bosmans E, Kenis G, Maes M (2001) Increased serum tumor necrosis factor alpha concentrations in major depression and multiple sclerosis. Eur Neuropsychopharmacol 11:203–208PubMedCrossRefGoogle Scholar
  65. 65.
    Miller DW, Abercrombie ED (1996) Effects of MK-801 on spontaneous and amphetamine-stimulated dopamine release in striatum measured with in vivo microdialysis in awake rats. Brain Res Bull 40:57–62PubMedCrossRefGoogle Scholar
  66. 66.
    Mittleman BB, Castellanos FX, Jacobsen LK, Rapoport JL, Swedo SE, Shearer GM (1997) Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. J Immunol 159:2994–2999PubMedGoogle Scholar
  67. 67.
    Müller N, Ackenheil M, Hofschuster E, Mempel W, Eckstein R (1991) Cellular immunity in schizophrenic patients before and during neuroleptic treatment. Psychiatry Res 37:147–160PubMedCrossRefGoogle Scholar
  68. 68.
    Müller N, Hofschuster E, Ackenheil M, Mempel W, Eckstein R (1993) Investigations of the cellular immunity during depression and the free interval: evidence for an immune activation in affective psychosis. Prog Neuropsychopharmacol Biol Psychiatry 17:713–730PubMedCrossRefGoogle Scholar
  69. 69.
    Müller N, Riedel M, Ackenheil M, Schwarz MJ (2000) Cellular and humoral immune system in schizophrenia: a conceptual re-evaluation. World J Biol Psychiatry 1:173–179PubMedCrossRefGoogle Scholar
  70. 70.
    Müller N, Riedel M, Dehning S, Spellmann I, Müller-Arends A, Cerovecki A et al (2004) Is the therapeutic effect of celecoxib in schizophrenia depending from duration of disease? Neuropsychopharmacology 29:176Google Scholar
  71. 71.
    Müller N, Riedel M, Schwarz MJ, Engel RR (2005) Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 255:149–151PubMedCrossRefGoogle Scholar
  72. 72.
    Müller N, Schwarz MJ (2002) Immunology in anxiety and depression. In: Kasper S, den Boer JA, Sitsen JMA (eds) Handbook of depression and anxiety. Marcel Dekker, New York, pp 267–288Google Scholar
  73. 73.
    Müller N, Schwarz MJ (2007) The immune-glutamatergic interaction: towards an integrated view of schizophrenia. J Neurotransm Suppl 72:269–280Google Scholar
  74. 74.
    Müller N, Schwarz MJ, Dehning S, Douhet A, Cerovecki A, Goldstein-Müller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Möller HJ, Arolt V, Riedel M (2006) The Cyclo-oxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11:680–684Google Scholar
  75. 75.
    Müller N, Ulmschneider M, Scheppach C, Schwarz MJ, Ackenheil M, Möller HJ, Gruber R, Riedel M (2004) COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 254:14–22PubMedCrossRefGoogle Scholar
  76. 76.
    Nordstrom P, Samuelsson M, Asberg M, Traskman BL, Aberg WA, Nordin C, Bertilsson L (1994) CSF 5-HIAA predicts suicide risk after attempted suicide. Suicide Life Threat Behav 24:1–9PubMedGoogle Scholar
  77. 77.
    Nowak G, Ordway GA, Paul IA (1995) Alterations in the N-methyl-d-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675:157–164PubMedCrossRefGoogle Scholar
  78. 78.
    Nudmamud-Thanoi S, Reynolds GP (2004) The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci Lett 372:173–177PubMedCrossRefGoogle Scholar
  79. 79.
    Nunes SOV, Reiche EMV, Morimoto HK, Matsuo T, Itano EN, Xavier ECD, Yamashita CM, Vieira VR, Menoli AV, Silva SS, Costa FB, Reiche FV, Silva FLV, Kaminami MS (2002) Immune and hormonal activity in adults suffering from depression. Braz J Med Biol Res 35:581–587PubMedCrossRefGoogle Scholar
  80. 80.
    Ohishi K, Ueno R, Nishino S, Sakai T, Hayaishi O (1988) Increased level of salivary prostaglandins in patients with major depression. Biol Psychiatry 23:326–334PubMedCrossRefGoogle Scholar
  81. 81.
    Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007PubMedGoogle Scholar
  82. 82.
    Ossowska G, Klenk-Majewska B, Szymczyk G (1997) The effect of NMDA antagonists on footshock-induced fighting behavior in chronically stressed rats. J Physiol Pharmacol 48:127–135PubMedGoogle Scholar
  83. 83.
    Ostroff R, Gonzales M, Sanacora G (2005) Antidepressant effect of ketamine during ECT. Am J Psychiatry 162:1385–1386PubMedCrossRefGoogle Scholar
  84. 84.
    Pyeon D, Diaz FJ, Splitter GA (2000) Prostaglandin E(2) increases bovine leukemia virus tax and pol mRNA levels via cyclooxygenase 2: regulation by interleukin-2, interleukin-10, and bovine leukemia virus. J Virol 74:5740–5745PubMedCrossRefGoogle Scholar
  85. 85.
    Reichenberg A, Kraus T, Haack M, Schuld A, Pollmacher T, Yirmiya R (2002) Endotoxin-induced changes in food consumption in healthy volunteers are associated with TNF-alpha and IL-6 secretion. Psychoneuroendocrinology 27:945–956PubMedCrossRefGoogle Scholar
  86. 86.
    Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmacher T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452PubMedCrossRefGoogle Scholar
  87. 87.
    Robinson CM, Hale PT, Carlin JM (2005) The role of IFN-gamma and TNF-alpha-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J Interferon Cytokine Res 25:20–30PubMedCrossRefGoogle Scholar
  88. 88.
    Rosa A, Peralta V, Papiol S, Cuesta MJ, Serrano F, Martinez-Larrea A, Fananas L (2004) Interleukin-1beta (IL-1beta) gene and increased risk for the depressive symptom-dimension in schizophrenia spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 124:10–14CrossRefGoogle Scholar
  89. 89.
    Rothermundt M, Arolt V, Fenker J, Gutbrodt H, Peters M, Kirchner H (2001) Different immune patterns in melancholic and non-melancholic major depression. Eur Arch Psychiatry Clin Neurosci 251:90–97PubMedCrossRefGoogle Scholar
  90. 90.
    Saito K, Crowley JS, Markey SP, Heyes MP (1993) A mechanism for increased quinolinic acid formation following acute systemic immune stimulation. J Biol Chem 268:15496–15503PubMedGoogle Scholar
  91. 91.
    Salzberg-Brenhouse HC, Chen EY, Emerich DF, Baldwin S, Hogeland K, Ranelli S, Lafreniere D, Perdomo B, Novak L, Kladis T, Fu K, Basile AS, Kordower JH, Bartus RT (2003) Inhibitors of cyclooxygenase-2, but not cyclooxygenase-1 provide structural and functional protection against quinolinic acid-induced neurodegeneration. J Pharmacol Exp Ther 306:218–228PubMedCrossRefGoogle Scholar
  92. 92.
    Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, Krystal JH, Mason GF (2004) Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 61:705–713PubMedCrossRefGoogle Scholar
  93. 93.
    Sanacora G, Kendell SF, Fenton L, Coric V, Krystal JH (2004) Riluzole augmentation for treatment-resistant depression. Am J Psychiatry 161:2132PubMedCrossRefGoogle Scholar
  94. 94.
    Sandrini M, Vitale G, Pini LA (2002) Effect of rofecoxib on nociception and the serotonin system in the rat brain. Inflamm Res 51:154–159PubMedCrossRefGoogle Scholar
  95. 95.
    Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217PubMedCrossRefGoogle Scholar
  96. 96.
    Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10PubMedCrossRefGoogle Scholar
  97. 97.
    Schwarz MJ, Chiang S, Müller N, Ackenheil M (2001) T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun 15:340–370PubMedCrossRefGoogle Scholar
  98. 98.
    Schwarz MJ, Riedel M, Ackenheil M, Müller N (2000) Decreased levels of soluble intercellular adhesion molecule-1 (sICAM-1) in unmedicated and medicated schizophrenic patients. Biol Psychiatry 47:29–33PubMedCrossRefGoogle Scholar
  99. 99.
    Schwieler L, Erhardt S, Erhardt C, Engberg G (2005) Prostaglandin-mediated control of rat brain kynurenic acid synthesis—opposite actions by COX-1 and COX-2 isoforms. J Neural Transm 112:863–872PubMedCrossRefGoogle Scholar
  100. 100.
    Seidel A, Arolt V, Hunstiger M, Rink L, Behnisch A, Kirchner H (1996) Increased CD56+ natural killer cells and related cytokines in major depression. Clin Immunol Immunopathol 78:83–85PubMedCrossRefGoogle Scholar
  101. 101.
    Seidel A, Arolt V, Hunstiger M, Rink L, Behnisch A, Kirchner H (1996) Major depressive disorder is associated with elevated monocyte counts. Acta Psychiatr Scand 94:198–204PubMedCrossRefGoogle Scholar
  102. 102.
    Sluzewska A, Rybakowski J, Bosmans E, Sobieska M, Berghmans R, Maes M, Wiktorowicz K (1996) Indicators of immune activation in major depression. Psychiatry Res 64:161–167PubMedCrossRefGoogle Scholar
  103. 103.
    Song C, Leonard BE (1994) An acute phase protein response in the olfactory bulbectomised rat: effect of sertraline treatment. Med Sci Res 22:313–314Google Scholar
  104. 104.
    Song C, Leonard BE (2000) Fundamentals of psychoneuroimmunology. Wiley, ChichesterGoogle Scholar
  105. 105.
    Song C, Lin A, Bonaccorso S, Heide C, Verkerk R, Kenis G, Bosmans E, Scharpe S, Whelan A, Cosyns P, De Jongh R, Maes M (1998) The inflammatory response system and the availability of plasma tryptophan in patients with primary sleep disorders and major depression. J Affect Disord 49:211–219PubMedCrossRefGoogle Scholar
  106. 106.
    Sperner-Unterweger B, Miller C, Holzner B, Widner B, Fleischhacker WW, Fuchs D (1999) Measurement of neopterin, kynurenine and tryptophan in sera of schizophrenic patients. In: Müller N (ed) Psychiatry, psychoimmunology, and viruses. Springer, Wien, pp 115–119Google Scholar
  107. 107.
    Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, Lee JC, Dubinett SM (2000) Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 164:361–370PubMedGoogle Scholar
  108. 108.
    Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMedGoogle Scholar
  109. 109.
    Stryjer R, Strous RD, Shaked G, Bar F, Feldman B, Kotler M, Polak L, Rosenzcwaig S, Weizman A (2003) Amantadine as augmentation therapy in the management of treatment-resistant depression. Int Clin Psychopharmacol 18:93–96PubMedCrossRefGoogle Scholar
  110. 110.
    Sumiyoshi T, Anil AE, Jin D, Jayathilake K, Lee M, Meltzer HY (2004) Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. Int J Neuropsychopharmacol 7:1–8PubMedCrossRefGoogle Scholar
  111. 111.
    Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185:1–10PubMedCrossRefGoogle Scholar
  112. 112.
    van Kammen DP, McAllister-Sistilli CG, Kelley ME (1997) Relationship between immune and behavioral measures in schizophrenia. In: Wieselmann G (ed) Current update in psychoimmunology. Springer, Wien, pp 51–55Google Scholar
  113. 113.
    Weiss G, Murr C, Zoller H, Haun M, Widner B, Ludescher C, Fuchs D (1999) Modulation of neopterin formation and tryptophan degradation by Th1- and Th2-derived cytokines in human monocytic cells. Clin Exp Immunol 116:435–440PubMedCrossRefGoogle Scholar
  114. 114.
    Westergaard T, Mortensen PB, Pedersen CB, Wohlfahrt J, Melbye M (1999) Exposure to prenatal and childhood infections and the risk of schizophrenia: suggestions from a study of sibship characteristics and influenza prevalence. Arch Gen Psychiatry 56:993–998PubMedCrossRefGoogle Scholar
  115. 115.
    Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpe S, Maes M (2005) IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 10:538–544PubMedCrossRefGoogle Scholar
  116. 116.
    Wilke I, Arolt V, Rothermundt M, Weitzsch C, Hornberg M, Kirchner H (1996) Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 246:279–284PubMedCrossRefGoogle Scholar
  117. 117.
    Yan QS, Reith ME, Jobe PC, Dailey JW (1997) Dizocilpine (MK-801) increases not only dopamine but also serotonin and norepinephrine transmissions in the nucleus accumbens as measured by microdialysis in freely moving rats. Brain Res 765:149–158PubMedCrossRefGoogle Scholar
  118. 118.
    Yilmaz A, Schulz D, Aksoy A, Canbeyli R (2002) Prolonged effect of an anesthetic dose of ketamine on behavioral despair. Pharmacol Biochem Behav 71:341–344PubMedCrossRefGoogle Scholar
  119. 119.
    Zarate CA Jr, Payne JL, Quiroz J, Sporn J, Denicoff KK, Luckenbaugh D, Charney DS, Manji HK (2004) An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatry 161:171–174PubMedCrossRefGoogle Scholar
  120. 120.
    Zarate CA Jr, Quiroz JA, Singh JB, Denicoff KD, De Jesus G, Luckenbaugh DA, Charney DS, Manji HK (2005) An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry 57:430–432PubMedCrossRefGoogle Scholar
  121. 121.
    Zhu J, Bengtsson BO, Mix E, Thorell LH, Olsson T, Link H (1994) Effect of monoamine reuptake inhibiting antidepressants on major histocompatibility complex expression on macrophages in normal rats and rats with experimental allergic neuritis (EAN). Immunopharmacology 27:225–244PubMedCrossRefGoogle Scholar
  122. 122.
    Zuckerman L, Weiner I (2005) Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 39:311–323PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Hospital for Psychiatry and PsychotherapyLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations