Changes in neurogenesis in dementia and Alzheimer mouse models: are they functionally relevant?

  • H. Georg KuhnEmail author
  • Christi M. Cooper-Kuhn
  • Karin Boekhoorn
  • Paul J. Lucassen


Alzheimer’s disease and related dementias are devastating disorders that lead to the progressive decline of cognitive functions. Characteristic features are severe brain atrophy, paralleled by accumulation of beta amyloid and neurofibrillary tangles. With the discovery of neurogenesis in the adult brain, the hopes have risen that these neurodegenerative conditions could be overcome, or at least ameliorated, by the generation of new neurons. The location of the adult neurogenic zones in the hippocampus and the lateral ventricle wall, close to corpus callosum and neocortex, indicates strategic positions for potential repair processes. However, we also need to consider that the generation of new neurons is possibly involved in cognitive functions and could, therefore, be influenced by disease pathology. Moreover, aberrant neurogenic mechanisms could even be a part of the pathological events of neurodegenerative diseases. It is the scope of this review to summarize and analyze the recent data from neurogenesis research with respect to Alzheimer’s disease and its animal models.


Alzheimer’s disease neuronal progenitor cells amyloid precursor protein tau presenilin 



Alzheimer’s disease


amyloid precursor protein

beta amyloid peptide


brain derived neurotrophic factor




cornu ammonis


central nervous system




dentate gyrus


fibroblast growth factor 2


insulin-like growth factor 1


long-term potentiation


microtubule-associated protein


neurofibrillary tangle


proliferating cell nuclear antigen


platelet-derived growth factor




rostral migratory stream


subgranular zone


subventricular zone


vascular endothelial growth factor


  1. 1.
    Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20:2896–2903PubMedGoogle Scholar
  2. 2.
    Adlard PA, Perreau VM, Pop V, Cotman CW (2005) Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 25:4217–4221PubMedCrossRefGoogle Scholar
  3. 3.
    Alonso M, Viollet C, Gabellec MM, Meas-Yedid V, Olivo-Marin JC, Lledo PM (2006) Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci 26:10508–10513PubMedCrossRefGoogle Scholar
  4. 4.
    Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1128–1129CrossRefGoogle Scholar
  5. 5.
    Andersen SS (2000) Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol 10:261–267PubMedCrossRefGoogle Scholar
  6. 6.
    Arendt T, Rodel L, Gartner U, Holzer M (1996) Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport 7:3047–3049PubMedCrossRefGoogle Scholar
  7. 7.
    Bennett DA, Schneider JA, Tang Y, Arnold SE, Wilson RS (2006) The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurol 5:406–412PubMedCrossRefGoogle Scholar
  8. 8.
    Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Bjork-Eriksson T, Nordborg C, Gage FH, Druid H, Eriksson PS, Frisen J (2006) Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci U S A 103: 12564–12568PubMedCrossRefGoogle Scholar
  9. 9.
    Blumcke I, Schewe JC, Normann S, Brustle O, Schramm J, Elger CE, Wiestler OD (2001) Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 11:311–321PubMedCrossRefGoogle Scholar
  10. 10.
    Boekhoorn K, Joels M, Lucassen PJ (2006a) Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 24:1–14Google Scholar
  11. 11.
    Boekhoorn K, Terwel D, Biemans B, Borghgraef P, Wiegert O, Ramakers GJ, de Vos K, Krugers H, Tomiyama T, Mori H, Joels M, van Leuven F, Lucassen PJ (2006b) Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy. J Neurosci 26:3514–3523Google Scholar
  12. 12.
    Bondolfi L, Ermini F, Long JM, Ingram DK, Jucker M (2004) Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging 25:333–340PubMedCrossRefGoogle Scholar
  13. 13.
    Bondolfi L, Calhoun M, Ermini F, Kuhn HG, Wiederhold KH, Walker L, Staufenbiel M, Jucker M (2002) Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J Neurosci 22:515–522PubMedGoogle Scholar
  14. 14.
    Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10PubMedCrossRefGoogle Scholar
  15. 15.
    Busser J, Geldmacher DS, Herrup K (1998a) Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci 18:2801–2807Google Scholar
  16. 16.
    Busser J, Geldmacher DS, Herrup K (1998b) Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci 18:2801–2807Google Scholar
  17. 17.
    Caceres A, Kosik KS (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343:461–463PubMedCrossRefGoogle Scholar
  18. 18.
    Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, Prochiantz A (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131:2173–2181PubMedCrossRefGoogle Scholar
  19. 19.
    Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417PubMedCrossRefGoogle Scholar
  20. 20.
    Caricasole A, Copani A, Caruso A, Caraci F, Iacovelli L, Sortino MA, Terstappen GC, Nicoletti F (2003) The Wnt pathway, cell-cycle activation and beta-amyloid: novel therapeutic strategies in Alzheimer’s disease? Trends Pharmacol Sci 24:233–238PubMedCrossRefGoogle Scholar
  21. 21.
    Chen Y, Tang BL (2006) The amyloid precursor protein and postnatal neurogenesis/neuroregeneration. Biochem Biophys Res Commun 341:1–5PubMedCrossRefGoogle Scholar
  22. 22.
    Chevallier NL, Soriano S, Kang DE, Masliah E, Hu G, Koo EH (2005) Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. Am J Pathol 167:151–159PubMedGoogle Scholar
  23. 23.
    Cooper-Kuhn CM, Winkler J, Kuhn HG (2004) Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J Neurosci Res 77:155–165PubMedCrossRefGoogle Scholar
  24. 24.
    Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301PubMedCrossRefGoogle Scholar
  25. 25.
    Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14PubMedCrossRefGoogle Scholar
  26. 26.
    Covolan L, Ribeiro LT, Longo BM, Mello LE (2000) Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine- or kainate-induced status epilepticus. Hippocampus 10:169–180PubMedCrossRefGoogle Scholar
  27. 27.
    Cross D, Tapia L, Garrido J, Maccioni RB (1996) Tau-like proteins associated with centrosomes in cultured cells. Exp Cell Res 229:378–387PubMedCrossRefGoogle Scholar
  28. 28.
    Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA (2003) Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol 460:563–572PubMedCrossRefGoogle Scholar
  29. 29.
    Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC (2004) Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42:535–552PubMedCrossRefGoogle Scholar
  30. 30.
    Del Bigio MR (1999) Proliferative status of cells in adult human dentate gyrus. Microsc Res Tech 45:353–358PubMedCrossRefGoogle Scholar
  31. 31.
    Delobel P, Lavenir I, Ghetti B, Holzer M, Goedert M (2006) Cell-cycle markers in a transgenic mouse model of human tauopathy: increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. Am J Pathol 168:878–887PubMedCrossRefGoogle Scholar
  32. 32.
    Delobel P, Flament S, Hamdane M, Mailliot C, Sambo AV, Begard S, Sergeant N, Delacourte A, Vilain JP, Buee L (2002) Abnormal Tau phosphorylation of the Alzheimer-type also occurs during mitosis. J Neurochem 83:412–420PubMedCrossRefGoogle Scholar
  33. 33.
    Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG (2004) Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127:601–609PubMedCrossRefGoogle Scholar
  34. 34.
    Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 495:70–83PubMedCrossRefGoogle Scholar
  35. 35.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRefGoogle Scholar
  36. 36.
    Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32:911–926PubMedCrossRefGoogle Scholar
  37. 37.
    Gheusi G, Cremer H, McLean H, Chazal G, Vincent JD, Lledo PM (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci USA 97:1823–1828PubMedCrossRefGoogle Scholar
  38. 38.
    Gluckman P, Klempt N, Guan J, Mallard C, Sirimanne E, Dragunow M, Klempt M, Singh K, Williams C, Nikolics K (1992) A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem Biophys Res Commun 182:593–599PubMedCrossRefGoogle Scholar
  39. 39.
    Gonzalez-Billault C, Engelke M, Jimenez-Mateos EM, Wandosell F, Caceres A, Avila J (2002) Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. J Neurosci Res 67:713–719PubMedCrossRefGoogle Scholar
  40. 40.
    Gotz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F (2004) Transgenic animal models of Alzheimer’s disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 9: 664–683PubMedGoogle Scholar
  41. 41.
    Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A 96:5263–5267PubMedCrossRefGoogle Scholar
  42. 42.
    Hattiangady B, Rao MS, Shetty GA, Shetty AK (2005) Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol 195:353–371PubMedCrossRefGoogle Scholar
  43. 43.
    Haughey NJ, Liu D, Nath A, Borchard AC, Mattson MP (2002a) Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer’s disease. Neuromolecular Med 1:125–135Google Scholar
  44. 44.
    Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP (2002b) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83:1509–1524Google Scholar
  45. 45.
    Heine VM, Maslam S, Joels M, Lucassen PJ (2004) Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol Aging 25:361–375PubMedCrossRefGoogle Scholar
  46. 46.
    Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24:9232–9239PubMedCrossRefGoogle Scholar
  47. 47.
    Jaffard R, Meunier M (1993) Role of the hippocampal formation in learning and memory. Hippocampus 3:203–217PubMedGoogle Scholar
  48. 48.
    Jiang W, Gu W, Brannstrom T, Rosqvist R, Wester P (2001) Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 32:1201–1207PubMedGoogle Scholar
  49. 49.
    Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA (2004a) Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci U S A 101:13363–13367Google Scholar
  50. 50.
    Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004b) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:343–347Google Scholar
  51. 51.
    Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98:4710–4715PubMedCrossRefGoogle Scholar
  52. 52.
    Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495PubMedCrossRefGoogle Scholar
  53. 53.
    Kempermann G, Kuhn HG, Gage FH (1998) Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci 18:3206–3212PubMedGoogle Scholar
  54. 54.
    Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452PubMedCrossRefGoogle Scholar
  55. 55.
    Kiyota Y, Takami K, Iwane M, Shino A, Miyamoto M, Tsukuda R, Nagaoka A (1991) Increase in basic fibroblast growth factor-like immunoreactivity in rat brain after forebrain ischemia. Brain Res 545:322–328PubMedCrossRefGoogle Scholar
  56. 56.
    Kondratick CM, Vandre DD (1996) Alzheimer’s disease neurofibrillary tangles contain mitosis-specific phosphoepitopes. J Neurochem 67:2405–2416PubMedCrossRefGoogle Scholar
  57. 57.
    Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A 96:5768–5773PubMedCrossRefGoogle Scholar
  58. 58.
    Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G (2006) Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27:1505–1513PubMedCrossRefGoogle Scholar
  59. 59.
    Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033PubMedGoogle Scholar
  60. 60.
    Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17:5820–5829PubMedGoogle Scholar
  61. 61.
    LaFerla FM, Oddo S (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 4:170–176CrossRefGoogle Scholar
  62. 62.
    Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K (2001) Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58:498–504PubMedCrossRefGoogle Scholar
  63. 63.
    Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120:701–713PubMedCrossRefGoogle Scholar
  64. 64.
    Lee J, Duan W, Long JM, Ingram DK, Mattson MP (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 15:99–108PubMedCrossRefGoogle Scholar
  65. 65.
    Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375PubMedCrossRefGoogle Scholar
  66. 66.
    Lopez-Toledano MA, Shelanski ML (2004) Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci 24:5439–5444PubMedCrossRefGoogle Scholar
  67. 67.
    Lucassen PJ, Chung WC, Kamphorst W, Swaab DF (1997) DNA damage distribution in the human brain as shown by in situ end labeling; area-specific differences in aging and Alzheimer disease in the absence of apoptotic morphology. J Neuropathol Exp Neurol 56: 887–900PubMedGoogle Scholar
  68. 68.
    Masters CL, Cappai R, Barnham KJ, Villemagne VL (2006) Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics. J Neurochem 97:1700–1725PubMedCrossRefGoogle Scholar
  69. 69.
    Mattson MP, Duan W, Guo Z (2003) Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms. J Neurochem 84:417–431PubMedCrossRefGoogle Scholar
  70. 70.
    Mattson MP, Duan W, Lee J, Guo Z (2001) Suppression of brain aging and neurodegenerative disorders by dietary restriction and environmental enrichment: molecular mechanisms. Mech Ageing Dev 122:757–778PubMedCrossRefGoogle Scholar
  71. 71.
    McGowan E, Eriksen J, Hutton M (2006) A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 22:281–289PubMedCrossRefGoogle Scholar
  72. 72.
    McShea A, Harris PL, Webster KR, Wahl AF, Smith MA (1997) Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am J Pathol 150:1933–1939PubMedGoogle Scholar
  73. 73.
    Mitchison T, Kirschner M (1984a) Microtubule assembly nucleated by isolated centrosomes. Nature 312:232–237Google Scholar
  74. 74.
    Mitchison T, Kirschner M (1984b) Dynamic instability of microtubule growth. Nature 312:237–242Google Scholar
  75. 75.
    Mohapel P, Leanza G, Kokaia M, Lindvall O (2005) Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging 26:939–946PubMedCrossRefGoogle Scholar
  76. 76.
    Montaron MF, Drapeau E, Dupret D, Kitchener P, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2006) Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging 27:645–654PubMedCrossRefGoogle Scholar
  77. 77.
    Nagy Z, Esiri MM, Smith AD (1997) Expression of cell division markers in the hippocampus in Alzheimer’s disease and other neurodegenerative conditions. Acta Neuropathol (Berl) 93:294–300CrossRefGoogle Scholar
  78. 78.
    Noetzel TL, Drechsel DN, Hyman AA, Kinoshita K (2005) A comparison of the ability of XMAP215 and tau to inhibit the microtubule destabilizing activity of XKCM1. Philos Trans R Soc Lond B Biol Sci 360:591–594PubMedCrossRefGoogle Scholar
  79. 79.
    Ohsawa I, Takamura C, Morimoto T, Ishiguro M, Kohsaka S (1999) Amino-terminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells. Eur J Neurosci 11:1907–1913PubMedCrossRefGoogle Scholar
  80. 80.
    Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738PubMedGoogle Scholar
  81. 81.
    Patel NV, Gordon MN, Connor KE, Good RA, Engelman RW, Mason J, Morgan DG, Morgan TE, Finch CE (2005) Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging 26:995–1000PubMedCrossRefGoogle Scholar
  82. 82.
    Plate KH, Beck H, Danner S, Allegrini PR, Wiessner C (1999) Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 58:654–666PubMedGoogle Scholar
  83. 83.
    Preuss U, Mandelkow EM (1998) Mitotic phosphorylation of tau protein in neuronal cell lines resembles phosphorylation in Alzheimer’s disease. Eur J Cell Biol 76:176–184PubMedGoogle Scholar
  84. 84.
    Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246PubMedCrossRefGoogle Scholar
  85. 85.
    Rosenzweig MR (1966) Environmental complexity, cerebral change, and behavior. Am Psychol 21:321–332PubMedCrossRefGoogle Scholar
  86. 86.
    Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59:912–921PubMedCrossRefGoogle Scholar
  87. 87.
    Schänzer A, Wachs FP, Wilhelm D, Acker T, Cooper-Kuhn CM, Beck H, Winkler J, Aigner L, Plate KH, Kuhn HG (2004) Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol 14:237–248PubMedCrossRefGoogle Scholar
  88. 88.
    Schmidt-Kastner R, Truettner J, Lin B, Zhao W, Saul I, Busto R, Ginsberg MD (2001) Transient changes of brain-derived neurotrophic factor (BDNF) mRNA expression in hippocampus during moderate ischemia induced by chronic bilateral common carotid artery occlusions in the rat. Brain Res Mol Brain Res 92:157–166PubMedCrossRefGoogle Scholar
  89. 89.
    Sennvik K, Boekhoorn K, Lasrado R, Terwel D, Verhaeghe S, Korr H, Schmitz C, Tomiyama T, Mori H, Krugers H, Joels M, Ramakers GJ, Lucassen PJ, Van Leuven F (2007) Tau-4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/knockout mice. FASEB J. 2007 Mar 9; [Epub ahead of print]Google Scholar
  90. 90.
    Shetty AK, Hattiangady B, Shetty GA (2005) Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia 51:173–186PubMedCrossRefGoogle Scholar
  91. 91.
    Shu T, Tseng HC, Sapir T, Stern P, Zhou Y, Sanada K, Fischer A, Coquelle FM, Reiner O, Tsai LH (2006) Doublecortin-like Kinase Controls Neurogenesis by Regulating Mitotic Spindles and M Phase Progression. Neuron 49:25–39PubMedCrossRefGoogle Scholar
  92. 92.
    Sitzer DI, Twamley EW, Jeste DV (2006) Cognitive training in Alzheimer’s disease: a meta-analysis of the literature. Acta Psychiatr Scand 114:75–90PubMedCrossRefGoogle Scholar
  93. 93.
    Smith TW, Lippa CF (1995) Ki-67 immunoreactivity in Alzheimer’s disease and other neurodegenerative disorders. J Neuropathol Exp Neurol 54:297–303PubMedGoogle Scholar
  94. 94.
    Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2:423–437PubMedCrossRefGoogle Scholar
  95. 95.
    Swaab DF, Uylings HBM (1988) Potentials and pitfalls in the use of human brain material in molecular neuroanatomy. In: van Leeuwen FW, Pool CW, Pach O (eds) Molecular neuroanatomy. Elsevier Science Publisher, Amsterdam, pp 403–416Google Scholar
  96. 96.
    Swaab DF, Lucassen PJ, Salehi A, Scherder EJA, Van Someren EJW, Verwer RWH (1999) Decreased neuronal activity and therapeutic strategies directed towards reactivation. In: Iqbal K, Swaab DF, Winblad B, Wisniewsk HM (eds) Alzheimer’s disease in Alzheimer’s disease and related disorders. John Wiley and Sons Ltd, New York, pp 749–756Google Scholar
  97. 97.
    Swaab DF, Dubelaar EJ, Hofman MA, Scherder EJ, van Someren EJ, Verwer RW (2002) Brain aging and Alzheimer’s disease; use it or lose it. Prog Brain Res 138:343–373PubMedCrossRefGoogle Scholar
  98. 98.
    Van der Borght K, Mulder J, Keijser JN, Eggen BJ, Luiten PG, Van der Zee EA (2005) Input from the medial septum regulates adult hippocampal neurogenesis. Brain Res Bull 67:117–125PubMedCrossRefGoogle Scholar
  99. 99.
    van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270PubMedCrossRefGoogle Scholar
  100. 100.
    van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034PubMedCrossRefGoogle Scholar
  101. 101.
    Vincent I, Jicha G, Rosado M, Dickson DW (1997) Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci 17:3588–3598PubMedGoogle Scholar
  102. 102.
    Wang R, Dineley KT, Sweatt JD, Zheng H (2004) Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 126:305–312PubMedCrossRefGoogle Scholar
  103. 103.
    Wen PH, Shao X, Shao Z, Hof PR, Wisniewski T, Kelley K, Friedrich VL Jr, Ho L, Pasinetti GM, Shioi J, Robakis NK, Elder GA (2002) Overexpression of wild type but not an FAD mutant presenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiol Dis 10:8–19PubMedCrossRefGoogle Scholar
  104. 104.
    Wen PH, Hof PR, Chen X, Gluck K, Austin G, Younkin SG, Younkin LH, DeGasperi R, Gama Sosa MA, Robakis NK, Haroutunian V, Elder GA (2004) The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol 188:224–237PubMedCrossRefGoogle Scholar
  105. 105.
    Wines-Samuelson M, Shen J (2005) Presenilins in the developing, adult, and aging cerebral cortex. Neuroscientist 11:441–451PubMedCrossRefGoogle Scholar
  106. 106.
    Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, Kempermann G (2006) Cognitive and physical activity differently modulate disease progression in the Amyloid Precursor Protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry 60:1314–1323PubMedCrossRefGoogle Scholar
  107. 107.
    Yang Y, Mufson EJ, Herrup K (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 23:2557–2563PubMedGoogle Scholar
  108. 108.
    Yang Y, Varvel NH, Lamb BT, Herrup K (2006) Ectopic cell cycle events link human Alzheimer’s disease and amyloid precursor protein transgenic mouse models. J Neurosci 26:775–784PubMedCrossRefGoogle Scholar
  109. 109.
    Yasuoka K, Hirata K, Kuraoka A, He JW, Kawabuchi M (2004) Expression of amyloid precursor protein-like molecule in astroglial cells of the subventricular zone and rostral migratory stream of the adult rat forebrain. J Anat 205:135–146PubMedCrossRefGoogle Scholar
  110. 110.
    Zhao Z, Ho L, Suh J, Qin W, Pyo H, Pompl P, Ksiezak-Reding H, Pasinetti GM (2003) A role of P301L tau mutant in anti-apoptotic gene expression, cell cycle and apoptosis. Mol Cell Neurosci 24:367–379PubMedCrossRefGoogle Scholar
  111. 111.
    Zigova T, Pencea V, Wiegand SJ, Luskin MB (1998) Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 11:234–245PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • H. Georg Kuhn
    • 1
    Email author
  • Christi M. Cooper-Kuhn
    • 1
  • Karin Boekhoorn
    • 2
  • Paul J. Lucassen
    • 2
  1. 1.Center for Brain Repair and Rehabilitation Institute for Neuroscience and PhysiologyGöteborg UniversityGöteborgSweden
  2. 2.Swammerdam Institute for Neuroscience Centre for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations