Influence of patient-specific anatomy on medical computed tomography and risk evaluation of minimally invasive surgery at the otobasis

  • Vanessa SchieferbeinEmail author
  • Judith Bredemann
  • R. Schmitt
  • I. Stenin
  • T. Klenzner
  • Jörg Schipper
  • Julia Kristin



With the increasing use of new minimally invasive approaches in temporal bone surgery, the need arises for evaluation of the risk of injury to sensitive anatomical structures. The factors that influence the measurement uncertainty (variation in representation of position and shape of anatomical structures) of imaging are of relevance. We investigate the effect of patients’ anatomy on the measurement uncertainty of medical CT.


Six formalin-fixed temporal bones were used, fiducial markers were bone-implanted, and 20 CT scans of each temporal bone were generated. Surgically threatened anatomical structures of importance were defined. Manual segmentation was performed to create 3D surface models, and different Gaussian filters were applied. Analysis points were established along the border of the superior semicircular canal to determine the deviation between the 3D images of the labyrinth. The standard uncertainty was calculated, and one-way analysis of variance was performed (significance level = 5%) to evaluate the effect of certain factors (patient, side, Gaussian filter) on the measurement uncertainty.


The influence of patient-specific anatomy on the measurement uncertainty of medical CT (p = 0.049) was demonstrated for the first time. The applied Gaussian filter (p = 0.622) and the patient’s side (p = 0.341) showed no significant effect.


The applied method and the results of the statistical analysis suggest that the patient’s individual anatomical conditions affect the measurement uncertainty of medical CT. Thus, the patient’s anatomy must be considered as an important influencing factor during risk evaluation concerning minimally invasive and image-guided surgery.


Image-guided surgery Measurement uncertainty Medical computed tomography Risk evaluation 



We would like to thank the German Research Foundation DFG for the support and the funding of the depicted research within the research group MUKNO, the Volume Graphics GmbH for the provision of the software VK STUDIO MAX 3.0 and the image material and the Department for Radiology at the University Hospital Duesseldorf for providing the CT scanner.


This research is funded by the German Research Foundation DFG within the research group MUKNO [SCHI 310/15-2].

Compliance with ethical standards

Ethical consideration

The study was approved by the local ethics committee (study number: 4713).

Conflict of interest

There is no conflict of interest for Schieferbein, Bredemann, Schmitt, Stenin, Klenzner, Schipper or Kristin.


  1. 1.
    Majdani O, Rau TS, Baron S, Eilers H, Baier C, Heimann B, Ortmaier T, Bartling S, Lenarz T, Leinung M (2009) A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg 4:475–486. CrossRefPubMedGoogle Scholar
  2. 2.
    Caversaccio M, Gavaghan K, Wimmer W, Williamson T, Ansò J, Mantokoudis G, Gerber N, Rathgeb C, Feldmann A, Wagner F, Scheidegger O, Kompis M, Weisstanner C, Zoka-Assadi M, Roesler K, Anschuetz L, Huth M, Weber S (2017) Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol 137:447–454. CrossRefPubMedGoogle Scholar
  3. 3.
    Labadie RF, Noble JH, Dawant BM, Balachandran R, Majdani O, Fitzpatrick JM (2008) Clinical validation of percutaneous cochlear implant surgery: initial report. Laryngoscope 118:1031–1039. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Labadie RF, Balachandran R, Noble JH, Blachon GS, Mitchell JE, Reda FA, Dawant BM, Fitzpatrick JM (2014) Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation: minimally invasive image-guided CI Surgery. Laryngoscope 124:1915–1922. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ke J, Zhang S-X, Hu L, Li C-S, Zhu Y-F, Sun S-L, Wang L-F, Ma F-R (2016) Minimally invasive cochlear implantation assisted by bi-planar device: an exploratory feasibility study in vitro. Chin Med J 129:2476–2483. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Labadie RF, Balachandran R, Mitchell J, Noble JH, Majdani O, Haynes D, Bennett M, Dawant BM, Fitzpatrick JM (2010) Clinical validation study of percutaneous cochlear access using patient customized micro-stereotactic frames. Otol Neurotol 31:94–99. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wanna GB, Balachandran R, Majdani O, Mitchell J, Labadie RF (2009) Percutaneous access to the petrous apex in vitro using customized micro-stereotactic frames based on image-guided surgical technology. Acta Otolaryngol 130:1–6CrossRefGoogle Scholar
  8. 8.
    Nguyen Y, Miroir M, Vellin J-F, Mazalaigue S, Bensimon J-L, Bernardeschi D, Ferrary E, Sterkers O, Grayeli AB (2011) Minimally invasive computer-assisted approach for cochlear implantation: a human temporal bone study. Surg Innov 18:259–267CrossRefGoogle Scholar
  9. 9.
    Stenin I, Hansen S, Becker M, Sakas G, Fellner D, Klenzner T, Schipper J, rg (2014) Minimally invasive multiport surgery of the lateral skull base. Biomed Res Int 2014:379295–379295. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stenin I, Hansen S, Becker M, Hirschfeld J, Klenzner T, Schipper J (2012) MUKNO - Multi-Port-Knochenchirurgie am Beispiel der Otobasis - Virtuelle Planung und Machbarkeitsanalyse multiangulärer Bohrkanäle. In: CURACGoogle Scholar
  11. 11.
    Fauser J, Sakas G, Mukhopadhyay A (2018) Planning nonlinear access paths for temporal bone surgery. Int J Comput Assist Radiol Surg 13:637–646. CrossRefPubMedGoogle Scholar
  12. 12.
    Bredemann J, Voigtmann C, Schmitt R, Stenin I, Kristin J, Klenzner T, Schipper J Determining the patient’s risk in minimally invasive surgery to the lateral skull base, vol 155. Universität und Inselspital Bern, BernGoogle Scholar
  13. 13.
    Gerber N, Bell B, Gavaghan K, Weisstanner C, Caversaccio M, Weber S (2014) Surgical planning tool for robotically assisted hearing aid implantation. Int J Comput Assist Radiol Surg 9:11–20. CrossRefPubMedGoogle Scholar
  14. 14.
    Stenin I, Hansen S, Nau-Hermes M, El-Hakimi W, Becker M, Bredemann J, Kristin J, Klenzner T, Schipper J (2017) Minimally invasive, multi-port approach to the lateral skull base: a first in vitro evaluation. Int J Comput Assist Radiol Surg 12:889–895. CrossRefPubMedGoogle Scholar
  15. 15.
    Nau M, Pollmanns S, Schmitt R (2013) Assessing the risk of minimally-invasive surgery: a metrological approach. Int Congr Metrol. CrossRefGoogle Scholar
  16. 16.
    Pollmanns S (2014) Bestimmung von Unsicherheitsbeiträgen bei medizinischen Computertomografiemessungen für die bildbasierte navigierte Chirurgie: Ergebnisse aus der Produktionstechnik. Apprimus Wissenschaftsverlag, AachenGoogle Scholar
  17. 17.
    Huda W, Lieberman KA, Chang J, Roskopf ML (2004) Patient size and X-ray technique factors in head computed tomography examinations. I. Radiation doses. Med Phys 31:588–594. CrossRefPubMedGoogle Scholar
  18. 18.
    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. CrossRefPubMedGoogle Scholar
  19. 19.
    Davatzikos C, Genc A, Xu D, Resnick SM (2001) Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. NeuroImage 14:1361–1369. CrossRefPubMedGoogle Scholar
  20. 20.
    Stapleford LJ, Lawson JD, Perkins C, Edelman S, Davis L, McDonald MW, Waller A, Schreibmann E, Fox T (2010) Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer. Int J Radiat Oncol Biol Phys 77:959–966. CrossRefPubMedGoogle Scholar
  21. 21.
    Reda FA, Noble JH, Rivas A, McRackan TR, Labadie RF, Dawant BM (2011) Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans. Med Phys 38:5590. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Strauß G, Hertel I, Dornheim J, Cordes J, Burgert O, Schulz T, Meixensberger J, Winkler D, Preim U, Dietz A, Preim B (2006) Dreidimensionale Darstellung von CT-Datensätzen des Halses für die chirurgische Planung: Eine Machbarkeitsstudie. Laryngorhinootologie 85:746–754. CrossRefPubMedGoogle Scholar
  23. 23.
    Schenk A, Prause G, Peitgen H-O (2000) Efficient semiautomatic segmentation of 3D objects in medical images. In: International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 186–195Google Scholar
  24. 24.
    Cates J, Lefohn A, Whitaker R (2004) GIST: an interactive, GPU-based level set segmentation tool for 3D medical images. Med Image Anal 8:217–231. CrossRefPubMedGoogle Scholar
  25. 25.
    Widmann G, Stoffner R, Bale R (2009) Errors and error management in image-guided craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 107:701–715. CrossRefGoogle Scholar
  26. 26.
    Labadie RF, Davis BM, Fitzpatrick JM (2005) Image-guided surgery: what is the accuracy? Curr Opin Otolaryngol Head Neck Surg 13:27–31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OtorhinolaryngologyUniversity Hospital DuesseldorfDuesseldorfGermany
  2. 2.Laboratory for Machine Tools and Production Engineering WZL, Chair of Production Metrology and Quality ManagementRWTH Aachen UniversityAachenGermany

Personalised recommendations