Advertisement

Amide proton transfer MRI detects early changes in nasopharyngeal carcinoma: providing a potential imaging marker for treatment response

  • Sahrish Qamar
  • Ann D. King
  • Qi-Yong Ai
  • Benjamin King Hong Law
  • Janet S. M. Chan
  • Darren M. C. Poon
  • Macy Tong
  • Frankie Kwok Fai Mo
  • Weitian Chen
  • Kunwar S. Bhatia
  • Anil T. Ahuja
  • Brigette B. Y. Ma
  • David Ka-Wai Yeung
  • Yi-Xiang Wang
  • Jing Yuan
Head & Neck
  • 35 Downloads

Abstract

Purpose

To determine if treatment of nasopharyngeal carcinoma (NPC) induces early changes in amide proton transfer-weighted (APTw) magnetic resonance imaging (MRI), and to perform a preliminary evaluation of APTw imaging in response assessment.

Methods

Sixteen patients with NPC planned for treatment with radiotherapy and/or chemotherapy underwent APTw imaging of the primary tumour pre-treatment and 2-week intra-treatment. Difference in pre- and intra-treatment APT mean (APTmean) was compared using the Wilcoxon signed rank test. Differences in APTmean and percentage change (%Δ) in APTmean were compared between responders and non-responders based on the outcome at 6 months, using the Mann–Whitney U test.

Results

APTmean decreased in 9/16 (56.3%) and increased in 7/16 (43.7%) with no significant difference between the pre- and intra-treatment APT values for the whole group (p > 0.05). NPC showed response in 11/16 (68.8%) and non-response in 5/11 (31.2%). There were significant differences between the %Δ of responders and non-responders for APTmean (p = 0.01). Responders showed %Δ decrease in APTmean of − 23.12% while non-responders showed a %Δ increase in APTmean of + 102.28%.

Conclusion

APT value changes can be detected in early intra-treatment. Intra-treatment %Δ APTmean shows potential in predicting short-term outcome.

Keywords

Amide proton transfer-weighted imaging Chemical exchange saturation transfer Magnetic resonance imaging Nasopharyngeal carcinoma Treatment response 

Notes

Acknowledgements

The authors thank Dr Jinyuan Zhou, Department of Radiology, Johns Hopkins University, for providing technical advice on pulse sequencing.

Funding

The work described in this paper was supported by grants from the Research Grants council of the Hong Kong Special Administrative Region, China (Project no. CUHK141070/14 and SEG_CUHK02).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standard.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

405_2018_5231_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 KB)

References

  1. 1.
    Li L, Huang S, Zhu X, Zhou Z, Liu Y, Qu S, Guo Y (2013) Identification of radioresistance-associated proteins in human nasopharyngeal carcinoma cell lines by proteomic analysis. Cancer Biother Radiopharm 28(5):380–384CrossRefPubMedGoogle Scholar
  2. 2.
    Chen Y, Liu X, Zheng D, Xu L, Hong L, Xu Y, Pan J (2014) Diffusion-weighted magnetic resonance imaging for early response assessment of chemoradiotherapy in patients with nasopharyngeal carcinoma. Magn Reson Imaging 32(6):630–637CrossRefPubMedGoogle Scholar
  3. 3.
    Hong J, Yao Y, Zhang Y, Tang T, Zhang H, Bao D, Chen Y, Pan J (2013) Value of magnetic resonance diffusion-weighted imaging for the prediction of radiosensitivity in nasopharyngeal carcinoma. Otolaryngol Head Neck Surg 149(5):707–713CrossRefPubMedGoogle Scholar
  4. 4.
    Thoeny HC, Keyzer FD, King AD (2012) Diffusion-weighted MR imaging in the head and neck. Radiology 263(1):19–32CrossRefPubMedGoogle Scholar
  5. 5.
    King AD, H.C (2016) Thoeny, functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: potential and limitations. Cancer Imaging 16(1):23CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50(6):1120–1126CrossRefPubMedGoogle Scholar
  7. 7.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95CrossRefPubMedGoogle Scholar
  8. 8.
    Sagiyama K, Mashimo T, Togao O, Vemireddy V, Hatanpaa KJ, Maher EA, Mickey BE, Pan E, Sherry AD, Bachoo R, Takahashi M (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci USA 111(12):4542–4547CrossRefPubMedGoogle Scholar
  9. 9.
    Bai Y, Lin Y, Zhang W, Kong L, Wang L, Zuo P, Vallines I, Schmitt B, Tian J, Song X, Zhou J, Wang M (2017) Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget 8(4):5834–5842PubMedGoogle Scholar
  10. 10.
    Togao O, Yoshiura T, Keupp J, Hiwatashi A, Yamashita K, Kikuchi K, Suzuki Y, Suzuki SO, Iwaki T, Hata N, Mizoguchi M, Yoshimoto K, Sagiyama K, Takahashi M, Honda H (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16(3):441–448CrossRefPubMedGoogle Scholar
  11. 11.
    Jiang S, Eberhart CG, Zhang Y, Heo HY, Wen Z, Blair L, Qin H, Lim M, Quinones-Hinojosa A, Weingart JD, Barker PB, Pomper MG, Laterra J, van Zijl PCM, Blakeley JO, Zhou J (2017) Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. Eur J Cancer 83:9–18CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Takayama Y, Nishie A, Togao O, Asayama Y, Ishigami K, Ushijima Y, Okamoto D, Fujita N, Sonoda K, Hida T, Ohishi Y, Keupp J, Honda H (2018) Amide proton transfer MR imaging of endometrioid endometrial adenocarcinoma: association with histologic grade. Radiology 286(3):909–917CrossRefPubMedGoogle Scholar
  13. 13.
    Takayama Y, Nishie A, Sugimoto M, Togao O, Asayama Y, Ishigami K, Ushijima Y, Okamoto D, Fujita N, Yokomizo A, Keupp J, Honda H (2016) Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores. MAGMA 29(4):671–679CrossRefPubMedGoogle Scholar
  14. 14.
    Sakata A, Okada T, Yamamoto Y, Fushimi Y, Dodo T, Arakawa Y, Mineharu Y, Schmitt B, Miyamoto S, Togashi K (2018) Addition of amide proton transfer imaging to FDG-PET/CT improves diagnostic accuracy in glioma grading: a preliminary study using the continuous net reclassification analysis. AJNR Am J Neuroradiol 39(2):265–272CrossRefPubMedGoogle Scholar
  15. 15.
    Jia G, Abaza R, Williams JD, Zynger DL, Zhou J, Shah ZK, Patel M, Sammet S, Wei L, Bahnson RR, Knopp MV (2011) Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging 33(3):647–654CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ohno Y, Yui M, Koyama H, Yoshikawa T, Seki S, Ueno Y, Miyazaki M, Ouyang C, Sugimura K (2016) Chemical exchange saturation transfer MR imaging—preliminary results for differentiation of malignant and benign thoracic lesions. Radiology 279(2):578–589CrossRefPubMedGoogle Scholar
  17. 17.
    Dula AN, Dewey BE, Arlinghaus LR, Williams JM, Klomp D, Yankeelov TE, Smith S (2015) Optimization of 7-T chemical exchange saturation transfer parameters for validation of glycosaminoglycan and amide proton transfer of fibroglandular breast tissue. Radiology 275(1):255–261CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang J, Zhu W, Tain R, Zhou XJ, Cai K (2018) Improved differentiation of low-grade and high-grade gliomas and detection of tumor proliferation using APT contrast fitted from Z-spectrum. Mol Imaging Biol 20(4):623–631CrossRefGoogle Scholar
  19. 19.
    Zhou J, Blakeley JO, Hua J, Kim M, Laterra J, Pomper MG, van Zijl PC (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 60(4):842–849CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhou J, Zhu H, Lim M, Blair L, Quinones-Hinojosa A, Messina SA, Eberhart CG, Pomper MG, Laterra J, Barker PB, van Zijl PC, Blakeley JO (2013) Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38(5):1119–1128CrossRefPubMedGoogle Scholar
  21. 21.
    Jiang S, Yu H, Wang X, Lu S, Li Y, Feng L, Zhang Y, Heo HY, Lee DH, Zhou J, Wen Z (2016) Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 T. Eur Radiol 26(1):64–71CrossRefPubMedGoogle Scholar
  22. 22.
    Park KJ, Kim HS, Park JE, Shim WH, Kim SJ, Smith SA (2016) Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol 26(12):4390–4403CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B, Blakeley J, Laterra J, van Zijl PC (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17(1):130–134CrossRefPubMedGoogle Scholar
  24. 24.
    Dula AN, Arlinghaus LR, Dortch RD, Dewey BE, Whisenant JG, Ayers GD, Yankeelov TE, Smith SA (2013) Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med 70(1):216–224CrossRefPubMedGoogle Scholar
  25. 25.
    Jing Z, Yinsheng C, Yiying Z, Shasha Y, Zhongping C, Yin W (2017) Assessment of chemoradiotherapy response in glioma with magnetic resonance amide proton transfer imaging in a rodent model. Conf Proc IEEE Eng Med Biol Soc 2017:541–543Google Scholar
  26. 26.
    Krikken E, Khlebnikov V, Zaiss M, Jibodh RA, van Diest PJ, Luijten PR, Klomp DWJ, van Laarhoven HWM, Wijnen JP (2018) Amide chemical exchange saturation transfer at 7 T: a possible biomarker for detecting early response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res 20(1):51CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nishie A, Asayama Y, Ishigami K, Ushijima Y, Takayama Y, Okamoto D, Fujita N, Tsurumaru D, Togao O, Sagiyama K, Manabe T, Oki E, Kubo Y, Hida T, Hirahashi-Fujiwara M, Keupp J, Honda H (2018) Amide proton transfer imaging to predict tumor response to neoadjuvant chemotherapy in locally advanced rectal cancer. J Gastroenterol Hepatol.  https://doi.org/10.1111/jgh.14315 CrossRefPubMedGoogle Scholar
  28. 28.
    Hong X, Liu L, Wang M, Ding K, Fan Y, Ma B, Lal B, Tyler B, Mangraviti A, Wang S, Wong J, Laterra J, Zhou J (2014) Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro Oncol 16(6):856–867CrossRefPubMedGoogle Scholar
  29. 29.
    Ma B, Blakeley JO, Hong X, Zhang H, Jiang S, Blair L, Zhang Y, Heo HY, Zhang M, van Zijl PC, Zhou J (2016) Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging 44(2):456–462CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yuan J, Chen S, King AD, Zhou J, Bhatia KS, Zhang Q, Yeung DK, Wei J, Mok GS, Wang YX (2014) Amide proton transfer-weighted imaging of the head and neck at 3 T: a feasibility study on healthy human subjects and patients with head and neck cancer. NMR Biomed 27(10):1239–1247CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Law BKH, King AD, Ai QY, Poon DMC, Chen W, Bhatia KS, Ahuja AT, Ma BB, Ka-Wai D, Yeung FK, Fai Mo YX, Wang J, Yuan (2018) Head and neck tumors: amide proton transfer MRI. Radiology 288(3):782–790CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sahrish Qamar
    • 1
  • Ann D. King
    • 1
  • Qi-Yong Ai
    • 1
  • Benjamin King Hong Law
    • 1
  • Janet S. M. Chan
    • 1
  • Darren M. C. Poon
    • 2
  • Macy Tong
    • 2
  • Frankie Kwok Fai Mo
    • 2
  • Weitian Chen
    • 1
  • Kunwar S. Bhatia
    • 3
  • Anil T. Ahuja
    • 1
  • Brigette B. Y. Ma
    • 2
  • David Ka-Wai Yeung
    • 2
  • Yi-Xiang Wang
    • 1
  • Jing Yuan
    • 4
  1. 1.Department of Imaging and Interventional Radiology, Faculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong S.A.R.China
  2. 2.Department of Clinical Oncology, State Key Laboratory Translational Oncology, Faculty of MedicineThe Chinese University of Hong Kong, Prince of Wales HospitalHong Kong S.A.R.China
  3. 3.Imaging Department, St Mary’s HospitalImperial College Healthcare, National Health Service TrustLondonUK
  4. 4.Medical Physics and Research DepartmentHong Kong Sanatorium & HospitalHong Kong S.A.R.China

Personalised recommendations