Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 275, Issue 9, pp 2265–2272 | Cite as

A CFD approach to understand nasoseptal perforations

  • M. A. Burgos
  • E. Sanmiguel-RojasEmail author
  • R. Rodríguez
  • F. Esteban-Ortega
Rhinology

Abstract

Introduction

Nasoseptal perforations (NSP) are becoming common in the modern world, and can cause a wide variety of symptoms, including a sensation of nasal obstruction, epistaxis, crusting, dryness, headache, nasal pain and a whistling sound. There is an extensive range of surgical treatment techniques, but reported results were rarely statistically significant. The lack of consistent surgical results may be related to the lack of knowledge about the pathophysiology of NSP and how they affect the nasal flow. Computational fluid dynamics (CFD) has proved to be a very useful tool to study nasal function.

Methods

We have used CFD software (the program MECOMLAND® and the Digbody® tool for virtual surgery) to investigate the behaviour of the parameters R–\(\phi\) based on CFD results, when four subjects underwent virtual surgery to induce a septal perforation: two subjects with healthy noses and two patients suffering from nasal airway obstruction. For each case a CFD study was performed, before and after creating an anterior (close to nostrils) or a posterior (close to choanae) NSP.

Results

In all cases analyzed, a posterior septal perforation did not result in a significant volumetric flow rate \({Q_{{\text{R}} \leftrightarrow {\text{L}}}}\) through the perforation between nasal passages. However, for anterior defects only in those nasal cavities considered diseased or unhealthy, high values of \({Q_{{\text{R}} \leftrightarrow {\text{L}}}}\) were found.

Conclusion

The induced NSP only rendered significant flow alterations in noses with preexisting nasal airway obstruction alterations, whereas in nasal cavities considered as normal the creation of a NSP did not produce significant differences between both sides. We strongly suggest that this finding can explain the variety of symptoms and the number of asymptomatic patients bearing NSP.

Keywords

Nasal septal perforations Computational fluid dynamics Virtual nasal surgery 

Notes

Acknowledgements

The authors acknowledge the access to the patient database of the University Hospital Virgen del Rocío of Sevilla (Spain).

Funding

None reported.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Oberg D, Akerlund A, Johansson L, Bende M (2003) Prevalence of nasal septal perforation: the Skövde population-based study. Rhinology 41:72–75PubMedGoogle Scholar
  2. 2.
    Gold M, Boyack I, Caputo N, Pearlman A (2017) Imaging prevalence of nasal septal perforation in an urban population. Clin Imaging 43:80–82.  https://doi.org/10.1016/j.clinimag.2017.02.002 CrossRefPubMedGoogle Scholar
  3. 3.
    Passali D, Spinosi MC, Salerni L, Cassano M, Rodriguez H, Passali FM, Bellussi LM (2017) Surgical treatment of nasal septal perforations: SIR (Italian Society of Rhinology) experts opinion. Acta Otorrinolaringol Esp 68:191–196.  https://doi.org/10.1016/j.otorri.2016.10.001 CrossRefPubMedGoogle Scholar
  4. 4.
    Bateman ND, Woolford TJ (2003) Informed consent for septal surgery: the evidence-base. J Laryngol Otol 117:186–189.  https://doi.org/10.1258/002221503321192476 PubMedCrossRefGoogle Scholar
  5. 5.
    Hanci D, Altun H (2015) Repair of nasal septal perforation using middle turbinate flap (monopedicled superiory based bone included conchal flap): a new unilateral middle turbinate mucosal flap technique. Eur Arch Otorhinolaryngol 272:1707–1712.  https://doi.org/10.1007/s00405-014-3266-1 CrossRefPubMedGoogle Scholar
  6. 6.
    Dinis PB, Haider H (2002) Septoplasty: long-term evaluation of results. Am J Otolaryngol 23:85–90CrossRefPubMedGoogle Scholar
  7. 7.
    Hardcastle PF, White A, Prescott RJ (1988) Clinical and rhinometric assessment of the nasal airway—do they measure the same entity? Clin Otolaryngol Allied Sci 13:185–191CrossRefPubMedGoogle Scholar
  8. 8.
    Hardcastle PF, White A, Prescott RJ (1988) Clinical or rhinometric assessment of the nasal airway—which is better? Clin Otolaryngol Allied Sci 13:381–385CrossRefPubMedGoogle Scholar
  9. 9.
    Lam DJ, James KT, Weaver EM (2006) Comparison of anatomic, physiological, and subjective measures of the nasal airway. Am J Rhinol 20:463–470CrossRefPubMedGoogle Scholar
  10. 10.
    Kjaergaard T, Cvancarova M, Steinsvåg SK (2008) Does nasal obstruction mean that the nose is obstructed? Laryngoscope 118:1476–1481.  https://doi.org/10.1097/MLG.0b013e318173a025 CrossRefPubMedGoogle Scholar
  11. 11.
    André RF, Vuyk HD, Ahmed A, Graamans K, Nolst Trenité GJ (2009) Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol 34:518–525.  https://doi.org/10.1111/j.1749-4486.2009.02042.x CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao K, Blacker K, Luo Y, Bryant B, Jiang J (2011) Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS One 6:e24618.  https://doi.org/10.1371/journal.pone.0024618 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Martonen TB, Quan L, Zhang Z, Musante CJ (2002) Flow simulation in the human upper respiratory tract. Cell Biochem Biophys 37:27–36.  https://doi.org/10.1385/CBB:37:1:27 CrossRefPubMedGoogle Scholar
  14. 14.
    Grant O, Bailie N, Watterson J, Cole J, Gallagher G, Hanna B (2004) Numerical model of a nasal septal perforation. Stud Health Technol Inform 107:1352–1356PubMedGoogle Scholar
  15. 15.
    Lee HP, Garlapati RR, Chong VFH, Wang DY (2010) Effects of septal perforation on nasal airflow: computer simulation study. J Laryngol Otol 124:48–54.  https://doi.org/10.1017/S0022215109990971 CrossRefPubMedGoogle Scholar
  16. 16.
    Faramarzi M, Baradaranfar MH, Abouali O, Atighechi S, Ahmadi G, Farhadi P, Keshavarzian E, Behniafard N, Baradaranfar A (2014) Numerical investigation of the flow field in realistic nasal septal perforation geometry. Allergy Rhinol (Providence) 5:e70–e77.  https://doi.org/10.2500/ar.2014.5.0090 CrossRefGoogle Scholar
  17. 17.
    Li L, Han D, Zhang L, Li Y, Zang H, Wang T, Liu Y (2016) Impact of nasal septal perforations of varying sizes and locations on the warming function of the nasal cavity: a computational fluid-dynamics analysis of 5 cases. Ear Nose Throat J 95:E9–E14PubMedGoogle Scholar
  18. 18.
    Zhou B, Huang Q, Cui S, Liu Y, Han D (2013) Impact of airflow communication between nasal cavities on nasal ventilation. ORL J Otorhinolaryngol Relat Spec 75:301–308.  https://doi.org/10.1159/000354581 CrossRefPubMedGoogle Scholar
  19. 19.
    Cannon DE, Frank DO, Kimbell JS, Poetker DM, Rhee JS (2013) Modeling nasal physiology changes due to septal perforations. Otolaryngol Head Neck Surg 148:513–518.  https://doi.org/10.1177/0194599812472881 CrossRefPubMedGoogle Scholar
  20. 20.
    Otto BA, Li C, Farag AA, Bush B, Krebs JP, Hutcheson RD, Kim K, Deshpande B, Zhao K (2017) Computational fluid dynamics evaluation of posterior septectomy as a viable treatment option for large septal perforations. Int Forum Allergy Rhinol 7:718–725.  https://doi.org/10.1002/alr.21951 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Burgos MA, Sanmiguel-Rojas E, del Pino C, Sevilla-García MA, Esteban-Ortega F (2017) New CFD tools to evaluate nasal airflow. Eur Arch Otorhinolaryngol 274:3121–3128.  https://doi.org/10.1007/s00405-017-4611-y CrossRefPubMedGoogle Scholar
  22. 22.
    Burgos MA, Sanmiguel-Rojas E, Singh N, Esteban-Ortega F (2018) DigBody®: a new 3D modeling tool for nasal virtual surgery. Comput Biol Med 98:118–125.  https://doi.org/10.1016/j.compbiomed.2018.05.016 CrossRefPubMedGoogle Scholar
  23. 23.
    Sanmiguel-Rojas E, Burgos MA, del Pino C, Sevilla-García MA, Esteban-Ortega F (2018) Robust nondimensional estimators to assess the nasal airflow in health and disease: mathematical estimators to assess nasal airflow. Int J Numer Methods in Biomed Eng 34:e2906.  https://doi.org/10.1002/cnm.2906 CrossRefGoogle Scholar
  24. 24.
    Burgos MA, Sanmiguel-Rojas E, Martín-Alcántara A, Hidalgo-Martínez M (2014) Effects of the ambient temperature on the airflow across a Caucasian nasal cavity. Int J Numer Methods Biomed Eng 30:430–445.  https://doi.org/10.1002/cnm.2616 CrossRefGoogle Scholar
  25. 25.
    ITK-Segmentation & registration toolkit. https://itk.org/Google Scholar
  26. 26.
    Taylor DJ, Doorly DJ, Schroter RC (2010) Inflow boundary profile prescription for numerical simulation of nasal airflow. J R Soc Interface 7(44):515–527.  https://doi.org/10.1098/rsif.2009.0306 CrossRefPubMedGoogle Scholar
  27. 27.
    Kim SK, Na Y, Kim J-I, Chung S-K (2013) Patient specific CFD models of nasal airflow: overview of methods and challenges. J Biomech 46:299–306.  https://doi.org/10.1016/j.jbiomech.2012.11.022 CrossRefPubMedGoogle Scholar
  28. 28.
    Goh AY, Hussain SSM (2007) Different surgical treatments for nasal septal perforation and their outcomes. J Laryngol Otol 121:419–426.  https://doi.org/10.1017/S002221510700566X CrossRefPubMedGoogle Scholar
  29. 29.
    Chen PG, Floreani S, Wormald P-J (2018) The utility of enlarging symptomatic nasal septal perforations. Ear Nose Throat J 97:E41–E43PubMedGoogle Scholar
  30. 30.
    Bhattacharyya N (2007) Clinical symptomatology and paranasal sinus involvement with nasal septal perforation. Laryngoscope 117:691–694.  https://doi.org/10.1097/01.mlg.0000256455.01473.72 CrossRefPubMedGoogle Scholar
  31. 31.
    Leong SC, Webb CJ (2018) Sino-Nasal Outcome Test-22 quality-of-life patterns in patients presenting with nasal septal perforation. Clin Otolaryngol 43:604–608.  https://doi.org/10.1111/coa.13031 CrossRefPubMedGoogle Scholar
  32. 32.
    Alobid I, Langdon C, López-Chacon M, Enseñat J, Carrau R, Bernal-Sprekelsen M, Santamaría A (2018) Total septal perforation repair with a pericranial flap: Radio-anatomical and clinical findings. Laryngoscope 128:1320–1327.  https://doi.org/10.1002/lary.26966 CrossRefPubMedGoogle Scholar
  33. 33.
    Morera Serna E, Ferrán de la Cierva L, Fernández MT, Canut SQ, Mesquida JA, Purriños FJG (2017) Endoscopic closure of large septal perforations with bilateral Hadad-Bassagasteguy flaps. Eur Arch Otorhinolaryngol 274:1521–1525.  https://doi.org/10.1007/s00405-016-4380-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ingeniería Térmica y de FluidosUniversidad Politécnica de CartagenaCartagenaSpain
  2. 2.Departamento de Ingeniería Mecánica, Térmica y de FluidosUniversidad de Málaga, Andalucía TechMalagaSpain
  3. 3.Servicio de Radiodiagnóstico, Servicio Andaluz de SaludHospital Universitario Virgen del RocíoSevilleSpain
  4. 4.Servicio de Otorrinolaringología, Hospital Universitario Virgen del RocíoUniversidad de SevillaSevilleSpain

Personalised recommendations