European Archives of Oto-Rhino-Laryngology

, Volume 274, Issue 12, pp 4141–4148 | Cite as

Cochlear implantation with the nucleus slim modiolar electrode (CI532): a preliminary experience

  • Domenico Cuda
  • Alessandra MurriEmail author


To combine the benefits of perimodiolar stimulation with minimal insertion trauma, a thin, pre-curved electrode (CI532) was recently developed by Cochlear Ltd. (Sidney). This array is held straight prior to insertion by an external polymer reloadable sheath that is removed after full electrode insertion. Sixty-seven patients suffering from severe-to-profound sensorineural hearing loss (mean age 42.2 years; mean duration of the hearing loss 19.6 years; mean PTA thresholds at 250–2000 Hz 92.4 dB HL) were implanted with the CI532. Mean duration of surgery was 58.7 min. In 61 patients, a round window (RW) approach was used. In the remaining six cases, a cochleostomy was done because of RW ossification. Impedances and NRT for each electrode are reported. NRT ratio average value was 0.86 ± 0.12 predicting correct scala tympani electrode placement. Post-operative PTA threshold in the implanted ear was 102.9 dB HL. Finally, speech recognition level in quiet at 65 dB HL was 44.6%, after a short follow-up (mean 5.2 months). Our preliminary experience with the new CI532 shows good surgical, electrophysiological, and audiological outcomes. In particular, our results are promising regarding the possibility to achieve minimal insertion trauma and good residual hearing preservation with the use of a deep inserted close modiolar electrode.


Cochlear implant CI532 Perimodiolar stimulation Round window approach Hearing loss 


Compliance with ethical standards

Conflict of interest

All authors deny any conflict of interest. We did not have any financial interest or support in this work.


  1. 1.
    Tykocinski M, Saunders E, Cohen LT, Treaba C, Briggs RJS (2001) The Contour electrode array: safety study and initial patient trials of a new perimodiolar design. Otol Neurotol 22:33–41CrossRefPubMedGoogle Scholar
  2. 2.
    Frijns JHM, De Snoo SL, Ten Kate JH (1996) Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 95:33–48CrossRefPubMedGoogle Scholar
  3. 3.
    Smullen JL, Polak M, Hodges AV, Payne SB, King JE 3rd, Telischi FF, Balkany TJ (2005) Facial nerve stimulation after cochlear implantation. Laryngoscope 115:977–982CrossRefPubMedGoogle Scholar
  4. 4.
    Gordin A, Papsin B, James A, Gordon K (2009) Evolution of cochlear implant arrays result in changes in behavioral and physiological responses in children. Otol Neurotol 30(7):908–915CrossRefPubMedGoogle Scholar
  5. 5.
    Hughes ML, Abbas PJ (2006) Electrophysiologic channel interaction, electrode pitch ranking, and behavioral threshold in straight versus perimodiolar cochlear implant electrode arrays. J Acoust Soc Am 119:1538–1547CrossRefPubMedGoogle Scholar
  6. 6.
    Holden LK, Finley CC, Firszt JB, Holden TA, Brenner C, Potts LG, Gotter BD, Vanderhoof SS, Mispagel K, Heydebrand G, Skinner MW (2013) Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear 34(3):342–360CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Carlson ML, Driscoll CL, Gifford RH, Service GJ, Tombers NM, Hughes-Borst BJ, Neff BA, Beatty CW (2011) Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol 32:962–968CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gifford RH, Dorman MF, Skarzynski H, Lorens A, Polak M, Driscoll CL, Roland P, Buchman CA (2013) Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments. Ear Hear 34:413–425CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Skarzynski H, Lorens A, Matusiak M, Porowski M, Skarzynski PH, James CJ (2014) Cochlear implantation with the nucleus slim straight electrode in subjects with residual low-frequency hearing. Ear Hear 35:33–43CrossRefGoogle Scholar
  10. 10.
    D’Elia A, Bartoli R, Giagnotti F, Quaranta N (2012) The role of hearing preservation on electrical thresholds and speech performances in cochlear implantation. Otol Neurotol 33(3):343–347CrossRefGoogle Scholar
  11. 11.
    O’Connell BP, Cakir A, Hunter JB, Francis DO, Noble JH, Labadie RF, Zuniga G, Dawant BM, Rivas A, Wanna GB (2016) Electrode location and angular insertion depth are predictors of audiologic outcomes in cochlear implantation. Otol Neurotol 37(8):1016–1023CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wanna GB, Noble JH, Carlson ML, Gifford RH, Dietrich MS, Haynes DS, Dawant BM, Labadie RF (2014) Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope 124(Suppl 6):S1-7PubMedGoogle Scholar
  13. 13.
    Roland JT (2005) A model for cochlear implant electrode insertion and force evaluation: results with a new electrode design and insertion technique. Laryngoscope 115:1325–1339CrossRefPubMedGoogle Scholar
  14. 14.
    Aschendorff A, Kromeier J, Klenzner T, Laszig R (2007) Quality control after insertion of the nucleus contour and contour advance electrode in adults. Ear Hear 28(2):75–79CrossRefGoogle Scholar
  15. 15.
    Fraysse B, Macías ÁR, Sterkers O, Burdo S, Ramsden R, Deguine O, Klenzner T, Lenarz T, Rodriguez MM, Von Wallenberg E, James C (2006) Residual hearing conservation and electroacoustic stimulation with the Nucleus 24 Contour Advance cochlear implant. Otol Neurotol 27:624–663CrossRefPubMedGoogle Scholar
  16. 16.
    Briggs RJ, Tykocinski M, Lazsig R, Aschendorff A, Lenarz T, Stöver T, Fraysse B, Marx M, Roland JT Jr, Roland PS, Wright CG, Gantz BJ, Patrick JF, Risi F (2011) Development and evaluation of the modiolar research array–multi-centre collaborative study in human temporal bones. Cochlear Implants Int 12(3):129–139CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Turrini M, Cutugno F, Maturi P, Prosser S, Leoni FA, Arslan E (1992) Bisyllabic words for speech audiometry: a new Italian material. Acta Otorhinolaryngol Ital 13(1):63–77Google Scholar
  18. 18.
    Mittmann P, Ernst A, Todt I (2015) Intraoperative electrophysiologic variations caused by the scalar position of Cochlear implant electrodes. Otol Neurotol 36(6):1010–1014CrossRefPubMedGoogle Scholar
  19. 19.
    Briggs RJ, Tykocinski M, Saunders E, Hellier W, Dahm M, Pyman B, Clark GM (2001) Surgical implications of perimodiolar cochlear implant electrode design: avoiding intracochlear damage and scala vestibuli insertion. Cochlear Implants Int 2:135–149CrossRefPubMedGoogle Scholar
  20. 20.
    Skarzynski H, Lorens A, Matusiak M et al (2012) Partial deafness treatment with the nucleus straight research array cochlear implant. Audiol Neurotol 17:82–91CrossRefGoogle Scholar
  21. 21.
    Ariyasu L, Galey FR, Hilsinger RJR, Byl FM (1989) Computer-generated three-dimensional reconstruction of the cochlea. Otolaryngol Head Neck Surg 100(2):87CrossRefPubMedGoogle Scholar
  22. 22.
    Stakhovskaya O, Sridhar D, Bonham BH, Leake PA (2007) Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. JARO 8(2):220–223CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Adunka O, Kiefer J (2006) Impact of electrode insertion depth on intracochlear trauma. Otolarygol Head Neck Surg 135:374–382CrossRefGoogle Scholar
  24. 24.
    Boyd PJ (2011) Potential benefits from deeply inserted cochlear implant electrodes. Ear Hear 32(4):411–427CrossRefPubMedGoogle Scholar
  25. 25.
    Gani M, Valentini G, Sigrist A, Kós MI, Boëx C (2007) Implications of deep electrode insertion on cochlear implant fitting. JARO 8(1):69–83CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gordon K, Papsin B. From Nucleus 24 to 513. (2013) Changing Cochlear Implant design affects auditory response thresholds. Otol Neurotol 34:436–442Google Scholar
  27. 27.
    Seidman MD, Vivek P, Dickinson W (2005) Neural response telemetry results with the nucleus 24 contour in a perimodiolar position. Otol Neurotol 26.4:620–623CrossRefGoogle Scholar
  28. 28.
    Grolman W, Maat A, Verdam F, Simi Y, Carelsen B, Freling N, Tange RA (2009) Spread of excitation measurements for the detection of electrode array foldovers: a prospective study comparing 3-dimensional rotational X-ray and intraoperative spread of excitation measurements. Otol Neurotol 30(1):27–33CrossRefPubMedGoogle Scholar
  29. 29.
    Copeland BJ, Pillsbury HC, Buchman CA (2004) Prospective evaluation of intraoperative cochlear implant radiographs. Otol Neurotol 25(3):295–297CrossRefPubMedGoogle Scholar
  30. 30.
    Gnagi SH, Baker TR, Pollei TR, Barrs DM (2015) Analysis of Intraoperative Radiographic Electrode Placement During Cochlear Implantation. Otol Neurotol 36(6):1045–1047CrossRefPubMedGoogle Scholar
  31. 31.
    Ying YLM, Lin JW, Oghalai JS, Williamson RA (2013) Cochlear implant electrode misplacement: incidence, evaluation, and management. Laryngoscope 123(3):757–766CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Carlson ML, Driscoll CL, Gifford RH, Service GJ, Tombers NM, Hughes-Borst BJ, Neff BA, Beatty CW (2011) Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol 32(6):962–968CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Balkany TJ, Connell SS, Hodges AV, Payne SL, Telischi FF, Eshraghi AA, Angeli SI, Germani R, Messiah S, Arheart KL (2006) Conservation of residual acoustic hearing after cochlear implantation. Otol Neurotol 27:1083–1088CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology‘Guglielmo da Saliceto’ HospitalPiacenzaItaly

Personalised recommendations