European Archives of Oto-Rhino-Laryngology

, Volume 274, Issue 11, pp 3867–3873 | Cite as

Importance of adhesiolysis in revision surgery for vibrant soundbridge device failures at the short incus process

  • Yoon Ah Park
  • Tae Hoon Kong
  • Jin Soon Chang
  • Young Joon SeoEmail author


The objectives of the study were to report a vibrant soundbridge (VSB) implant revision surgical method involving adhesiolysis at the short incus process under local anesthesia and demonstrate successful hearing performance after surgery. Three cases of VSB surgery, performed in 2016, were enrolled. All cases had diagnoses of device failure. This ‘seven-incision line’ exposed the floating mass transducer directly, after which the three steps (adhesiolysis, curettage, and hydrocortisone injection) were performed. Upon fitting the VSB, sound fields were evaluated immediately and at 3 months after the revision. During the revisions of surgery, all patients achieved immediate hearing gains and noticed differences in the outer devices with different amplifications. Satisfactory improvements in hearing thresholds and speech recognition abilities were confirmed by improvements of 20–30 dB in hearing loss 3 months after revision surgery. The VSB implant revision surgical method involving adhesiolysis is safe and efficient for patients who experience a VSB device failure. This method will reduce the requirement for surgery under general anesthesia, reduce the overall period of clinical therapy and, therefore, minimize patients’ medical costs.

Level of Evidence 4


Vibrant soundbridge Revision Short incus process Adhesiolysis 



This research was supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under Industrial Strategic Technology Development Program (10051518) and Program (10070232).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Yes (participants).

Informed consent


Supplementary material

Supplementary material 1 (MP4 91420 kb)


  1. 1.
    Fisch U, Cremers WRJ, Lenarz T et al (2001) Clinical experience with the vibrant soundbridge implant device. Otol Neurotol 22:962–972CrossRefPubMedGoogle Scholar
  2. 2.
    Mosnier I, Sterkers O, Bouccara D et al (2008) Benefit of the vibrant soundbridge device in patients implanted for 5 to 8 years. Ear Hear 29:281–284CrossRefPubMedGoogle Scholar
  3. 3.
    Maier H, Hinze AL, Gerdes T et al (2015) Long-term results of incus vibroplasty in patients with moderate-to-severe sensorineural hearing loss. Audiol Neurootol 20:136–146CrossRefPubMedGoogle Scholar
  4. 4.
    Sterkers O, Boucarra D, Labassi S et al (2003) A middle ear implant, the symphonix vibrant soundbridge: retrospective study of the first 125 patients implanted in France. Otol Neurotol 24:427–436CrossRefPubMedGoogle Scholar
  5. 5.
    Rameh C, Meller R, Lavieille JP et al (2010) Long-term patient satisfaction with different middle ear hearing implants in sensorineural hearing loss. Otol Neurotol 31:883–892CrossRefGoogle Scholar
  6. 6.
    Schraven SP, Dalhoff E, Wildenstein D et al (2014) Alternative fixation of an active middle ear implant at the short incus process. Audiol Neurootol 19:1–11CrossRefPubMedGoogle Scholar
  7. 7.
    Reich H (1995) Laparoscopic surgery for adhesiolysis. In: Arregui ME, Fitzgibbons RJ Jr, Katkhouda N et al (eds) Principles of laparoscopic surgery. Springer, New York, pp 283–298CrossRefGoogle Scholar
  8. 8.
    Morgan DE, Dirks DD, Bower DR (1979) Suggested threshold sound pressure levels for frequency modulated (warble) tones in the sound field. J Speech Hear Disord 44:37–54CrossRefPubMedGoogle Scholar
  9. 9.
    Lenarz T, Weber BP, Issing PR et al (2001) Vibrant soundbridge system: ein neuartiges hörimplantat für innenohrschwerhörige—teil 2: audiologische ergebnisse. Laryngo Rhino Otol 80:370–380CrossRefGoogle Scholar
  10. 10.
    Todt I, Seidl RO, Gross M et al (2002) Comparison of different vibrant soundbridge audioprocessors with conventional hearing aids. Otol Neurotol 23:669–673CrossRefPubMedGoogle Scholar
  11. 11.
    Beltrame AM, Martini A, Prosser S et al (2009) Coupling the vibrant soundbridge to cochlea round window. Otol Neurol 30:194–201CrossRefGoogle Scholar
  12. 12.
    Böheim K, Mlynski R, Lenarz T et al (2012) Round window vibroplasty: long-term results. Acta Otolaryngol 132:1042–1048CrossRefPubMedGoogle Scholar
  13. 13.
    Huber AM, Mlynski R, Müller J et al (2012) A new vibroplasty coupling technique as a treatment for conductive and mixed hearing losses. Otol Neurotol 33:613–617CrossRefPubMedGoogle Scholar
  14. 14.
    Brito R, Monteiro TA, Leal AF et al (2012) Complicações em 550 cirurgias consecutivas de implante coclear. Braz J Otorhinolaryngol 78:80–85CrossRefPubMedGoogle Scholar
  15. 15.
    Truy E, Eshraghi AA, Balkany TJ et al (2006) Vibrant soundbridge surgery. Otol Neurotol 27:887–895CrossRefPubMedGoogle Scholar
  16. 16.
    Polanski JF, Soares AD, Dos Santos ZM et al (2016) Active middle-ear implant fixation in an unusual place: clinical and audiological outcomes. J Laryngol Otol 130:404–407CrossRefPubMedGoogle Scholar
  17. 17.
    Pankowsky DA, Ziats NP, Topham NS et al (1990) Morphologic characteristics of adsorbed human plasma proteins on vascular grafts and biomaterials. J Vasc Surg 11:599–606CrossRefPubMedGoogle Scholar
  18. 18.
    Bonfield TL, Colton E, Anderson JM (1992) Protein adsorption of biomedical polymers influences activated monocytes to produce fibroblast stimulating factors. J Biomed Mater Res 26:457–465CrossRefPubMedGoogle Scholar
  19. 19.
    Tang L, Thevenot P, Hu W (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8:270–280CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Collier TO, Anderson JM (2002) Protein and surface effects on monocyte and macrophage adhesion, maturation, and survival. J Biomed Mater Res 60:487–496CrossRefPubMedGoogle Scholar
  21. 21.
    Simpson A (2009) Frequency-lowering devices for managing high-frequency hearing loss: a review. Trends Amplif 13:87–106CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li TC, Cooke ID (1995) The value of an absorbable adhesion barrier, Interceed®, in the prevention of adhesion reformation following microsurgical adhesiolysis. Obstet Gynecol Surv 50:190–192CrossRefGoogle Scholar
  23. 23.
    Zwartenkot JW, Mulder JJ, Snik AF et al (2016) Active middle ear implantation: long-term medical and technical follow-up, implant survival, and complications. Otol Neurotol 37:513–519CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology Head and Neck SurgeryYonsei University Wonju College of MedicineWonjuSouth Korea
  2. 2.Department of Otorhinolaryngology Head and Neck SurgeryInju University Seoul Paik HospitalSeoulKorea

Personalised recommendations