Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 274, Issue 10, pp 3773–3780 | Cite as

The association of lifetime physical inactivity with head and neck cancer: a hospital-based case–control analysis

  • Alexis J. Platek
  • Rikki A. Cannioto
  • John Lewis Etter
  • Jae Kim
  • Janine M. Joseph
  • Nicholas R. Gulati
  • Kristina L. Schmitt
  • Emily Callahan
  • Edgar Khachatryan
  • Ryan Nagy
  • Albina Minlikeeva
  • J. Brian Szender
  • Anurag K. Singh
  • Iris Danziger
  • Kirsten B. MoysichEmail author
Head and Neck

Abstract

Despite mounting epidemiological evidence suggesting an inverse association between recreational physical activity and cancer risk, evidence associated with head and neck cancer is scant. We conducted a case–control analysis to examine the associations of lifetime physical inactivity with the risk of head and neck squamous cell carcinoma (HNSCC). We utilized data from the Patient Epidemiology Data System at Roswell Park Cancer Institute (RPCI). Participants included 246 patients with HNSCC and 504 cancer-free controls who received medical services at RPCI between 1990 and 1998. Participants were considered physically inactive if they did not participate in any regular, weekly recreational physical activity throughout their lifetime, prior to diagnosis. Multivariate logistic regression models were utilized to estimate odds ratios (OR) and 95% confidence intervals (CI) representing the association between lifetime physical inactivity and HNSCC risk. We observed a significant positive association between recreational physical inactivity and HNSCC risk (OR = 2.73, 95% CI 1.87–3.99, p < 0.001). In subgroup analyses by body mass index (BMI) (underweight/normal-weight: OR = 3.40, 95% CI 1.89–6.12, p < 0.001; overweight/obese: OR = 2.40, 95% CI 1.43–4.02, p < 0.001) and smoking status (former smoker: OR = 3.12, 95% CI 1.89–5.14, p < 0.001; never smoker: OR = 2.71, 95% CI 1.21–6.05, p = 0.020; current smoker: OR = 1.61, 95% CI 0.66–3.95, p = 0.300), significant positive associations were also observed. Results of the current analyses suggest that lifetime physical inactivity associates with HNSCC independent of BMI. In addition, physical inactivity may be a modifiable risk factor among never smokers. These data add to the growing body of evidence suggesting that physical inactivity may be an independent risk factor for cancer.

Keywords

Head and neck cancer Physical activity Physical inactivity Recreational physical activity Cancer epidemiology 

Abbreviations

HNSCC

Head and neck squamous cell carcinoma

HPV

Human papilloma virus

BMI

Body mass index

RPCI

Roswell Park Cancer Institute

PEDS

Patient epidemiology data system

PAQ

Physical activity questionnaire

SAS

Statistical analysis system

OR

Odds ratio

CI

Confidence interval

IgA

Immunoglobulin A

INHANCE

International Head and Neck Cancer Epidemiology Consortium

Notes

Compliance with ethical standards

Ethics approval and consent to participate

The RPCI Institutional Review Board approved the conduct of this study, and all participants provided informed consent.

Funding

Kirsten B. Moysich was supported by New York State Department of Health (NYS DOH C019286). Nicholas R. Gulati, Kristina L. Schmitt, and Ryan Nagy were supported by the Roswell Alliance Foundation. J. Brian Szender was supported by the National Institutes of Health (NIH 5T32CA108456).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rettig EM, D’Souza G (2015) Epidemiology of head and neck cancer. Surg Oncol Clin N Am 24(3):379–396. doi: 10.1016/j.soc.2015.03.001 CrossRefPubMedGoogle Scholar
  2. 2.
    American Cancer Society (2015) Cancer facts and figures 2015. American Cancer Society, AtlantaGoogle Scholar
  3. 3.
    Hashibe M, Brennan P, Benhamou S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova E, Fernandez L, Wunsch-Filho V, Franceschi S, Hayes RB, Herrero R, Koifman S, La Vecchia C, Lazarus P, Levi F, Mates D, Matos E, Menezes A, Muscat J, Eluf-Neto J, Olshan AF, Rudnai P, Schwartz SM, Smith E, Sturgis EM, Szeszenia-Dabrowska N, Talamini R, Wei Q, Winn DM, Zaridze D, Zatonski W, Zhang ZF, Berthiller J, Boffetta P (2007) Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J Natl Cancer Inst 99(10):777–789. doi: 10.1093/jnci/djk179 CrossRefPubMedGoogle Scholar
  4. 4.
    Chaturvedi AK et al (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29(32):4294–4301CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cannioto R, LaMonte MJ, Risch HA, Hong C, Sucheston-Campbell LE, Eng KH, Szender JB, Chang-Claude J, Schmalfeldt B, Klapdor R, Gower E, Minlikeeva AN, Zirpoli GR, Bandera EV, Berchuck A, Cramer D, Doherty JA, Edwards RP, Fridley BL, Goode EL, Goodman MT, Hogdall E, Hosono S, Jensen A, Jordan S, Kjaer SK, Matuso K, Ness RB, Olsen CM, Olsen SH, Pearch CL, Pike MC, Rossing MA, Szamreta EA, Thompson PJ, Tseng C, Vierkant RA, Webb P, Wentzensen N, Wicklund KG, Winham SJ, Wu AH, Modungo F, Schildkraut JM, Terry KL, Kelemen LE, Moysich KB (2016) Chronic recreational physical inactivity and epithelial ovarian cancer risk: evidence from the Ovarian Cancer Association Consortium. Cancer Epidemiol Biomark Prev 25(7):1114–1124. doi: 10.1158/1055-9965.epi-15-1330 CrossRefGoogle Scholar
  6. 6.
    Szender JB, Cannioto R, Gulati NR, Schmitt KL, Friel G, Minlikeeva A, Platek A, Gower EH, Nagy R, Khachatryan E, Mayor PC, Kasza KA, Lele SB, Odunsi K, Moysich KB (2016) Impact of physical inactivity on risk of developing cancer of the uterine cervix: a case–control study. J Low Genit Tract Dis 20(3):230–233. doi: 10.1097/LGT.0000000000000210 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brenner DR, Yannitsos DH, Farris MS, Johansson M, Friedenreich CM (2016) Leisure-time physical activity and lung cancer risk: a systematic review and meta-analysis. Lung Cancer 95:17–27. doi: 10.1016/j.lungcan.2016.01.021 CrossRefPubMedGoogle Scholar
  8. 8.
    Kushi LH, Byers T, Doyle C, Bandera EV, McCullough M, McTiernan A, Gansler T, Andrews KS, Thun MJ, American Cancer Society N, Physical Activity Guidelines Advisory C (2006) American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin 56(5):254–281 (quiz 313–254) CrossRefPubMedGoogle Scholar
  9. 9.
    Moore SC, Lee I, Weiderpass E et al (2016) ASsociation of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA. Intern Med 176(6):816–825. doi: 10.1001/jamainternmed.2016.1548 Google Scholar
  10. 10.
    USDHHS (2008) 2008 physical activity guidelines for Americans. Office of Disease Prevention and Health Promotion, Washington, DCGoogle Scholar
  11. 11.
    USDHHS (2014) Prevalence and trends data: nationwide physical activity—2013. US Department of Health and Human Services, Centers for Disease Control and Prevention. Accessed November 1, 2014 2014Google Scholar
  12. 12.
    Sanchis-Gomar F, Lucia A, Yvert T, Ruiz-Casado A, Pareja-Galeano H, Santos-Lozano A, Fiuza-Luces C, Garatachea N, Lippi G, Bouchard C, Berger NA (2015) Physical inactivity and low fitness deserve more attention to alter cancer risk and prognosis. Cancer Prev Res (Phila) 8(2):105–110. doi: 10.1158/1940-6207.capr-14-0320 CrossRefGoogle Scholar
  13. 13.
    Bull FC, Armstrong TP, Dixon T, Ham S, Neiman A, Pratt M (2004) Physical inactivity. In: WHO (ed) Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors, vol 1. WHO, p 729–881Google Scholar
  14. 14.
    Celis-Morales CA, Perez-Bravo F, Ibanez L, Salas C, Bailey ME, Gill JM (2012) Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers. PLoS One 7(5):e36345. doi: 10.1371/journal.pone.0036345 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Byers T (2014) Physical activity and gastric cancer: so what? An epidemiologist’s confession. Cancer Prev Res (Phila) 7(1):9–11. doi: 10.1158/1940-6207.capr-13-0400 CrossRefGoogle Scholar
  16. 16.
    Baker JA, Odunuga OO, Rodabaugh KJ, Reid ME, Menezes RJ, Moysich KB (2006) Active and passive smoking and risk of ovarian cancer. Int J Gynecol Cancer 16(Suppl 1):211–218. doi: 10.1111/j.1525-1438.2006.00473.x CrossRefPubMedGoogle Scholar
  17. 17.
    Maldonado G, Greenland S (1993) Simulation study of confounder-selection strategies. Am J Epidemiol 138(11):923–936CrossRefPubMedGoogle Scholar
  18. 18.
    Hashibe M, Hunt J, Wei M, Buys S, Gren L, Lee YC (2013) Tobacco, alcohol, body mass index, physical activity, and the risk of head and neck cancer in the prostate, lung, colorectal, and ovarian (PLCO) cohort. Head Neck 35(7):914–922. doi: 10.1002/hed.23052 CrossRefPubMedGoogle Scholar
  19. 19.
    Leitzmann MF, Koebnick C, Freedman ND, Park Y, Ballard-Barbash R, Hollenbeck AR, Schatzkin A, Abnet CC (2008) Physical activity and head and neck cancer risk. Cancer Causes Control 19(10):1391–1399. doi: 10.1007/s10552-008-9211-0 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nicolotti N, Chuang SC, Cadoni G, Arzani D, Petrelli L, Bosetti C, Brenner H, Hosono S, La Vecchia C, Talamini R, Matsuo K, Muller H, Muscat J, Paludetti G, Ricciardi G, Boffetta P, Hashibe M, Boccia S (2011) Recreational physical activity and risk of head and neck cancer: a pooled analysis within the international head and neck cancer epidemiology (INHANCE) Consortium. Eur J Epidemiol 26(8):619–628. doi: 10.1007/s10654-011-9612-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Dosemeci M, Hayes RB, Vetter R, Hoover RN, Tucker M, Engin K, Unsal M, Blair A (1993) Occupational physical activity, socioeconomic status, and risks of 15 cancer sites in Turkey. Cancer Causes Control 4(4):313–321CrossRefPubMedGoogle Scholar
  22. 22.
    Cannioto RA, Moysich KB (2015) Epithelial ovarian cancer and recreational physical activity: a review of the epidemiological literature and implications for exercise prescription. Gynecol Oncol 137(3):559–573. doi: 10.1016/j.ygyno.2015.03.016 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bull FC, Armstrong TP, DixON T, Ham S, NEiMAN A, Pratt M (2004) Physical inactivity. comparative quantification of health risks global and regional burden of disease attributable to selected major risk factors, Geneva, World Health Organization, p 729–881Google Scholar
  24. 24.
    Troiano R (2010) Limitations of self-report in physical activity and obesity research. In: Bouchard CK (ed) physical activity and obesity, 2nd edn. Human Kinetics, Champaign, pp 34–37Google Scholar
  25. 25.
    Troiano R (2008) Differences between objective and self-report measures of physical activity. What do they mean? J Kir Sic Meas Eval 10:31–42Google Scholar
  26. 26.
    Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, Rogers CJ, Northoff H, Abbasi A, Simon P (2011) Position statement. Part one: immune function and exercise. Exerc Immunol Rev 17:6–63PubMedGoogle Scholar
  27. 27.
    Kruk J, Czerniak U (2013) Physical activity and its relation to cancer risk: updating the evidence. Asian Pac J Cancer Prev 14(7):3993–4003CrossRefPubMedGoogle Scholar
  28. 28.
    Francis JL, Gleeson M, Pyne DB, Callister R, Clancy RL (2005) Variation of salivary immunoglobulins in exercising and sedentary populations. Med Sci Sports Exerc 37(4):571–578CrossRefPubMedGoogle Scholar
  29. 29.
    Trochimiak T, Hubner-Wozniak E (2012) Effect of exercise on the level of immunoglobulin a in saliva. Biol Sport 29(4):255–261. doi: 10.5604/20831862.1019662 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    National Center for Health Statistics (2016) National Health Interview Survey 2015, Survey Description. Hyattsville, MarylandGoogle Scholar
  31. 31.
    Gaudet MM, Olshan AF, Chuang SC, Berthiller J, Zhang ZF, Lissowska J, Zaridze D, Winn DM, Wei Q, Talamini R, Szeszenia-Dabrowska N, Sturgis EM, Schwartz SM, Rudnai P, Eluf-Neto J, Muscat J, Morgenstern H, Menezes A, Matos E, Bucur A, Levi F, Lazarus P, La Vecchia C, Koifman S, Kelsey K, Herrero R, Hayes RB, Franceschi S, Wunsch-Filho V, Fernandez L, Fabianova E, Daudt AW, Dal Maso L, Curado MP, Chen C, Castellsague X, Benhamou S, Boffetta P, Brennan P, Hashibe M (2010) Body mass index and risk of head and neck cancer in a pooled analysis of case-control studies in the International Head and Neck Cancer Epidemiology (INHANCE) Consortium. Int J Epidemiol 39(4):1091–1102. doi: 10.1093/ije/dyp380 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chung CH, Gillison ML (2009) Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res 15(22):6758–6762. doi: 10.1158/1078-0432.CCR-09-0784 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Alexis J. Platek
    • 1
  • Rikki A. Cannioto
    • 1
  • John Lewis Etter
    • 1
  • Jae Kim
    • 2
  • Janine M. Joseph
    • 1
  • Nicholas R. Gulati
    • 1
  • Kristina L. Schmitt
    • 1
  • Emily Callahan
    • 1
  • Edgar Khachatryan
    • 1
  • Ryan Nagy
    • 1
  • Albina Minlikeeva
    • 1
  • J. Brian Szender
    • 3
  • Anurag K. Singh
    • 4
  • Iris Danziger
    • 2
  • Kirsten B. Moysich
    • 1
    Email author
  1. 1.Department of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloUSA
  2. 2.Department of OtolaryngologyUniversity at Buffalo Jacobs School of Medicine and Biomedical SciencesBuffaloUSA
  3. 3.Department of GynecologyRoswell Park Cancer InstituteBuffaloUSA
  4. 4.Department of Radiation MedicineRoswell Park Cancer InstituteBuffaloUSA

Personalised recommendations