European Archives of Oto-Rhino-Laryngology

, Volume 274, Issue 6, pp 2549–2556 | Cite as

Immunoexpression of GLUT-1 and angiogenic index in pleomorphic adenomas, adenoid cystic carcinomas, and mucoepidermoid carcinomas of the salivary glands

  • Lélia Batista de Souza
  • Lucileide Castro de Oliveira
  • Cassiano Francisco Weege Nonaka
  • Maria Luiza Diniz de Sousa Lopes
  • Leão Pereira Pinto
  • Lélia Maria Guedes Queiroz
Head and Neck


This study aimed to evaluate and compare the immunoexpression of glucose transporter-1 (GLUT-1) and angiogenic index between pleomorphic adenomas (PAs), adenoid cystic carcinomas (ACCs), and mucoepidermoid carcinomas (MECs) of the salivary glands, and establish associations with the respective subtype/histological grade. Twenty PAs, 20 ACCs, and 10 MECs were submitted to morphological and immunohistochemical analysis. GLUT-1 expression was semi-quantitatively evaluated and angiogenic index was assessed by microvessel counts using anti-CD34 antibody. Higher GLUT-1 immunoexpression was observed in the MECs compared to PAs and ACCs (p = 0.022). Mean number of microvessels was 66.5 in MECs, 40.4 in PAs, and 21.2 in ACCs (p < 0.001). GLUT-1 expression and angiogenic index showed no significant correlation in the tumors studied. Results suggest that differences in biological behavior of the studied tumors are related to GLUT-1. Benign and malignant salivary gland tumors differ in the angiogenic index; however, angiogenesis may be independent of the tumor cell’s metabolic demand.


Pleomorphic adenoma Adenoid cystic carcinoma Mucoepidermoid carcinoma Glucose transporter Angiogenic index 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in accordance with the ethical standards of the Ethics Committee of the Federal University of Rio Grande do Norte (Permit No. 375/2011) and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Ito FB, Jorge J, Vargas PA, Lopes MA (2009) Histopathological findings of pleomorphic adenomas of the salivary glands. Med Oral Patol Oral Cir Bucal 14(2):E57–E61PubMedGoogle Scholar
  2. 2.
    Liu J, Shao C, Tan ML, Mu D, Ferris RL, Ha PK (2012) Molecular biology of adenoid cystic carcinoma. Head Neck 34(11):1665–1677CrossRefPubMedGoogle Scholar
  3. 3.
    Venkata V, Irulandy P (2011) The frequency and distribution pattern of minor salivary gland tumors in a government dental teaching hospital, Chennai, India. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111(1):e32–e39CrossRefPubMedGoogle Scholar
  4. 4.
    Jaafari-Ashkavandi Z, Ashraf MJ (2014) Increased mast cell counts in benign and malignant salivary gland tumors. J Dent Res Dent Clin Dent Prospects 8(1):15–20PubMedPubMedCentralGoogle Scholar
  5. 5.
    Moghadam SA, Abadi AM, Mokhtari S (2015) Immunohistochemical analysis of CD34 expression in salivary gland tumors. J Oral Maxillofac Pathol 19(1):30–33CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ayala FR, Rocha RM, Carvalho KC, Carvalho AL, da Cunha IW, Lourenco SV, Soares FA (2010) GLUT1 and GLUT3 as potential prognostic markers for oral squamous cell carcinoma. Molecules 15(4):2374–2387CrossRefPubMedGoogle Scholar
  7. 7.
    Marin-Hernandez A, Gallardo-Perez JC, Rodriguez-Enriquez S, Encalada R, Moreno-Sanchez R, Saavedra E (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807(6):755–767CrossRefPubMedGoogle Scholar
  8. 8.
    Demeda CF, Carvalho CH, Aquino AR, Nonaka CF, Souza LB, Pinto LP (2014) Expression of glucose transporters 1 and 3 in metastatic and non-metastatic lower lip squamous cell carcinoma. Braz Dent J 25(5):372–378CrossRefPubMedGoogle Scholar
  9. 9.
    Mori Y, Tsukinoki K, Yasuda M, Miyazawa M, Kaneko A, Watanabe Y (2006) Glucose transporter type 1 expression are associated with poor prognosis in patients with salivary gland tumors. Oral Oncol 43(6):563–569CrossRefPubMedGoogle Scholar
  10. 10.
    Thorens B, Mueckler M (2009) Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab 298(2):E141–E145CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shi L, Chen XM, Wang L, Zhang L, Chen Z (2007) Expression of caveolin-1 in mucoepidermoid carcinoma of the salivary glands: correlation with vascular endothelial growth factor, microvessel density, and clinical outcome. Cancer 109(8):1523–1531CrossRefPubMedGoogle Scholar
  12. 12.
    Cardoso SV, Souza KC, Faria PR, Eisenberg AL, Dias FL, Loyola AM (2009) Assessment of angiogenesis by CD105 antigen in epithelial salivary gland neoplasms with diverse metastatic behavior. BMC Cancer 9:391CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Demasi AP, Costa AF, Altemani A, Furuse C, Araujo NS, Araujo VC (2010) Glucose transporter protein 1 expression in mucoepidermoid carcinoma of salivary gland: correlation with grade of malignancy. Int J Exp Pathol 91(2):107–113CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Seifert G, Langrock I, Donath K (1976) A pathological classification of pleomorphic adenoma of the salivary glands (author’s transl). Hno 24(12):415–426PubMedGoogle Scholar
  15. 15.
    EL-Naggar H, Huvos AG (2005) Adenoid cystic carcinoma. In: World Health Organization classification of tumors: pathology and genetics of head and neck tumors, 3rd edn. IARC Press, Lyon, pp 221–222Google Scholar
  16. 16.
    Goode RK, El-Naggar AK (2005) Mucoepidermoid carcinoma. In: World Health Organization classification of tumors: pathology and genetics of head and neck tumors. IARC Press, Lyon, pp 219–220Google Scholar
  17. 17.
    Maeda K, Chung YS, Takatsuka S, Ogawa Y, Onoda N, Sawada T, Kato Y, Nitta A, Arimoto Y, Kondo Y (1995) Tumour angiogenesis and tumour cell proliferation as prognostic indicators in gastric carcinoma. Br J Cancer 72(2):319–323CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8CrossRefPubMedGoogle Scholar
  19. 19.
    Bell D, Luna MA, Weber RS, Kaye FJ, El-Naggar AK (2008) CRTC1/MAML2 fusion transcript in Warthin’s tumor and mucoepidermoid carcinoma: evidence for a common genetic association. Genes Chromosomes Cancer 47(4):309–314CrossRefPubMedGoogle Scholar
  20. 20.
    Marques YM, de Lima Mde D, de Melo Alves Sde M Jr, Soares FA, de Araujo VC, dos Santos Pinto D, Jr., Mantesso A (2008) Mdm2, p53, p21 and pAKT protein pathways in benign neoplasms of the salivary gland. Oral Oncol 44(9):903–908CrossRefPubMedGoogle Scholar
  21. 21.
    Cook KM, Figg WD (2010) Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 60(4):222–243CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fonseca FP, Basso MP, Mariano FV, Kowalski LP, Lopes MA, Martins MD, Rangel AL, Santos-Silva AR, Vargas PA (2015) Vascular endothelial growth factor immunoexpression is increased in malignant salivary gland tumors. Ann Diagn Pathol 19(3):169–174CrossRefPubMedGoogle Scholar
  23. 23.
    Theocharis S, Gribilas G, Giaginis C, Patsouris E, Klijanienko J (2015) Angiogenesis in salivary gland tumors: from clinical significance to treatment. Expert Opin Ther Targets 19(6):807–819CrossRefPubMedGoogle Scholar
  24. 24.
    Kolev Y, Uetake H, Iida S, Ishikawa T, Kawano T, Sugihara K (2007) Prognostic significance of VEGF expression in correlation with COX-2, microvessel density, and clinicopathological characteristics in human gastric carcinoma. Ann Surg Oncol 14(10):2738–2747CrossRefPubMedGoogle Scholar
  25. 25.
    Yan G, Zhou XY, Cai SJ, Zhang GH, Peng JJ, Du X (2008) Lymphangiogenic and angiogenic microvessel density in human primary sporadic colorectal carcinoma. World J Gastroenterol 14(1):101–107CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang J, Peng B, Chen X (2005) Expressions of nuclear factor kappaB, inducible nitric oxide synthase, and vascular endothelial growth factor in adenoid cystic carcinoma of salivary glands: correlations with the angiogenesis and clinical outcome. Clin Cancer Res 11(20):7334–7343CrossRefPubMedGoogle Scholar
  27. 27.
    Shieh YS, Hung YJ, Hsieh CB, Chen JS, Chou KC, Liu SY (2009) Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann Surg Oncol 16(3):751–760CrossRefPubMedGoogle Scholar
  28. 28.
    Dales JP, Garcia S, Bonnier P, Duffaud F, Andrac-Meyer L, Ramuz O, Lavaut MN, Allasia C, Charpin C (2003) CD105 expression is a marker of high metastatic risk and poor outcome in breast carcinomas. Correlations between immunohistochemical analysis and long-term follow-up in a series of 929 patients. Am J Clin Pathol 119(3):374–380CrossRefPubMedGoogle Scholar
  29. 29.
    Fonsatti E, Nicolay HJ, Altomonte M, Covre A, Maio M (2009) Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc Res 86(1):12–19CrossRefPubMedGoogle Scholar
  30. 30.
    Ortega AD, Sanchez-Arago M, Giner-Sanchez D, Sanchez-Cenizo L, Willers I, Cuezva JM (2008) Glucose avidity of carcinomas. Cancer Lett 276(2):125–135CrossRefPubMedGoogle Scholar
  31. 31.
    Ohba S, Fujii H, Ito S, Fujimaki M, Matsumoto F, Furukawa M, Yokoyama J, Kusunoki T, Ikeda K, Hino O (2009) Overexpression of GLUT-1 in the invasion front is associated with depth of oral squamous cell carcinoma and prognosis. J Oral Pathol Med 39(1):74–78CrossRefPubMedGoogle Scholar
  32. 32.
    Bonfitto VL, Demasi AP, Costa AF, Bonfitto JF, Araujo VC, Altemani A (2010) High-grade transformation of adenoid cystic carcinomas: a study of the expression of GLUT1 glucose transporter and of mitochondrial antigen. J Clin Pathol 63(7):615–619CrossRefPubMedGoogle Scholar
  33. 33.
    Costa AF, Demasi AP, Bonfitto VL, Bonfitto JF, Furuse C, Araujo VC, Metze K, Altemani A (2008) Angiogenesis in salivary carcinomas with and without myoepithelial differentiation. Virchows Arch 453(4):359–367CrossRefPubMedGoogle Scholar
  34. 34.
    Romani AA, Borghetti AF, Del Rio P, Sianesi M, Soliani P (2006) The risk of developing metastatic disease in colorectal cancer is related to CD105-positive vessel count. J Surg Oncol 93(6):446–455CrossRefPubMedGoogle Scholar
  35. 35.
    Shin DY, Jang KS, Kim BY, Choi JE, Yoon H, Ko YH, Jeong HS (2014) Comparison of adenoid cystic carcinomas arising from the parotid gland vs. the submandibular gland: focus on systemic metastasis and tumor-associated blood vessels. J Oral Pathol Med 43(6):441–447CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang J, Peng B (2007) In vitro angiogenesis and expression of nuclear factor kappaB and VEGF in high and low metastasis cell lines of salivary gland adenoid cystic carcinoma. BMC Cancer 7:95CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Luukkaa H, Laitakari J, Vahlberg T, Klemi P, Stenback F, Grenman R (2009) Morphometric analysis of CD34-positive vessels in salivary gland adenoid cystic and mucoepidermoid carcinomas. J Oral Pathol Med 38(9):695–700CrossRefPubMedGoogle Scholar
  38. 38.
    Huang ZQ, Chen WL, Li HG, Li JS, Xu ZY, Lin ZY (2010) Extracellular matrix metalloproteinase inducer expression in salivary gland tumors: a correlation with microvessel density. J Craniofac Surg 21(6):1855–1860CrossRefPubMedGoogle Scholar
  39. 39.
    Costa AF, Tasso MG, Mariano FV, Soares AB, Chone CT, Crespo AN, Fresno MF, Llorente JL, Suárez C, de Araújo VC, Hermsen M, Altemani A (2016) Levels and patterns of expression of hypoxia inducible factor 1α, vascular endothelial growth factor, glucose transporter 1 and CD105 in adenoid cystic carcinomas with high grade transformation. Histopathology 60(5):816–825CrossRefGoogle Scholar
  40. 40.
    Wang WM, Zhao ZL, Zhang WF, Zhao YF, Zhang L, Sun ZJ (2015) Role of hypoxia-inducible factor-1α and CD146 in epidermal growth factor receptor-mediated angiogenesis in salivary gland adenoid cystic carcinoma 2015. Mol Med Rep 12(3):3432–3438PubMedPubMedCentralGoogle Scholar
  41. 41.
    Cai Y, Wang R, Zhao YF, Jia J, Sun ZJ, Chen XM (2010) Expression of Neuropilin-2 in salivary adenoid cystic carcinoma: its implication in tumor progression and angiogenesis. Pathol Res Pract 206(12):793–799CrossRefPubMedGoogle Scholar
  42. 42.
    Ota T, Ota K, Jono H, Fujimori H, Ueda M, Shinriki S, Sueyoshi T, Shinohara M, Ando Y (2010) Midkine expression in malignant salivary gland tumors and its role in tumor angiogenesis. Oral Oncol 46(9):657–661CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Lélia Batista de Souza
    • 1
    • 4
  • Lucileide Castro de Oliveira
    • 1
    • 2
  • Cassiano Francisco Weege Nonaka
    • 3
  • Maria Luiza Diniz de Sousa Lopes
    • 1
  • Leão Pereira Pinto
    • 1
  • Lélia Maria Guedes Queiroz
    • 1
  1. 1.Postgraduate Program in Oral PathologyFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Department of Pathology and Forensic MedicineFederal University of AmazonasManausBrazil
  3. 3.State University of ParaíbaCampina GrandeBrazil
  4. 4.Departamento de OdontologiaUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations