European Archives of Oto-Rhino-Laryngology

, Volume 274, Issue 3, pp 1375–1381 | Cite as

Chronological changes in microbial profiles in external and middle ear diseases: a 20-year study in Korea

  • Hantai Kim
  • Oak-Sung Choo
  • Jeong Hun Jang
  • Hun Yi Park
  • Yun-Hoon ChoungEmail author


Microbial infection is one of the most significant causes of ear diseases, but microbial profiles are very diverse according to the diseases and change over time. The purpose of the study was to clarify differences and chronological changes in causative pathogens among infectious ear diseases over the last 20 years, and to identify antibiotic resistance. In total, 1191 isolates were included from patients diagnosed with chronic otitis media without cholesteatoma (COM), cholesteatomatous otitis media (Chole), middle ear effusion (MEE), including acute otitis media and otitis media with effusion, and external otitis (EO). Data were collected periodically for the years 1995, 2000, 2004, 2009, and 2013. Culture results and antibiotic resistance were assessed. The most common microorganism identified was S. aureus. The microbial profiles differed significant among the COM, Chole, and MEE groups (p < 0.001). In contrast, there was no distinct difference between COM and EO (p = 0.332). COM, Chole, and MEE also showed significant chronological changes in microbial profiles over time. The frequency of CNS increased markedly in COM and Chole (p = 0.029 and 0.028, respectively); however, S. pneumoniae infection decreased significantly in MEE (p = 0.016). Methicillin-resistant S. aureus (MRSA) demonstrated a constant trend (p = 0.564), whereas ciprofloxacin-resistant P. aeruginosa increased over time (p < 0.001). Microbial profiles have changed over a 20-year period. Increases in the frequency of coagulase-negative Staphylococcus (CNS) and bacterial resistance to ciprofloxacin, used widely in treating ear infections, are noteworthy.


Microorganisms Ear Disease Antibiotic sensitivity Culture 



This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (HI15C0968).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest related to the present study.

This study was performed with the approval of the Institutional Review Board of Ajou University School of Medicine, Republic of Korea.

Informed consent

Not applicable due to a retrospective data analysis


  1. 1.
    Revai K, Mamidi D, Chonmaitree T (2008) Association of nasopharyngeal bacterial colonization during upper respiratory tract infection and the development of acute otitis media. Clin Infect Dis 46:e34–e37CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kubba H, Pearson JP, Birchall JP (2000) The aetiology of otitis media with effusion: a review. Clin Otolaryngol Allied Sci 25:181–194CrossRefPubMedGoogle Scholar
  3. 3.
    Poetker DM, Lindstrom DR, Edmiston CE, Krepel CJ, Link TR, Kerschner JE (2005) Microbiology of middle ear effusions from 292 patients undergoing tympanostomy tube placement for middle ear disease. Int J Pediatr Otorhinolaryngol 69:799–804CrossRefPubMedGoogle Scholar
  4. 4.
    Seibert JW, Danner CJ (2006) Eustachian tube function and the middle ear. Otolaryngol Clin North Am 39:1221–1235CrossRefPubMedGoogle Scholar
  5. 5.
    Goycoolea MV, Hueb MM, Ruah C (1991) Otitis media: the pathogenesis approach. Definitions and terminology. Otolaryngol Clin North Am 24:757–761PubMedGoogle Scholar
  6. 6.
    Persaud R, Hajioff D, Trinidade A, Khemani S, Bhattacharyya MN, Papadimitriou N et al (2007) Evidence-based review of aetiopathogenic theories of congenital and acquired cholesteatoma. J Laryngol Otol 121:1013–1019CrossRefPubMedGoogle Scholar
  7. 7.
    Stone KE (2007) Otitis externa. Pediatr Rev 28:77–78CrossRefPubMedGoogle Scholar
  8. 8.
    Casey JR, Kaur R, Friedel VC, Pichichero ME (2013) Acute otitis media otopathogens during 2008 to 2010 in Rochester, New York. Pediatr Infect Dis J 32:805–809PubMedPubMedCentralGoogle Scholar
  9. 9.
    Vartiainen E, Vartiainen J (1996) Effect of aerobic bacteriology on the clinical presentation and treatment results of chronic suppurative otitis media. J Laryngol Otol 110:315–318CrossRefPubMedGoogle Scholar
  10. 10.
    Yeo SG, Park DC, Hong SM, Cha CI, Kim MG (2007) Bacteriology of chronic suppurative otitis media–a multicenter study. Acta Otolaryngol 127:1062–1067CrossRefPubMedGoogle Scholar
  11. 11.
    Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532CrossRefPubMedGoogle Scholar
  12. 12.
    Jang CH, Park SY (2004) Emergence of ciprofloxacin-resistant pseudomonas in chronic suppurative otitis media. Clin Otolaryngol Allied Sci 29:321–323CrossRefPubMedGoogle Scholar
  13. 13.
    Park DC, Lee SK, Cha CI, Lee SO, Lee MS, Yeo SG (2008) Antimicrobial resistance of Staphylococcus from otorrhea in chronic suppurative otitis media and comparison with results of all isolated Staphylococci. Eur J Clin Microbiol Infect Dis 27:571–577CrossRefPubMedGoogle Scholar
  14. 14.
    Verhoeff M, van der Veen EL, Rovers MM, Sanders EA, Schilder AG (2006) Chronic suppurative otitis media: a review. Int J Pediatr Otorhinolaryngol 70:1–12CrossRefPubMedGoogle Scholar
  15. 15.
    Madana J, Yolmo D, Kalaiarasi R, Gopalakrishnan S, Sujatha S (2011) Microbiological profile with antibiotic sensitivity pattern of cholesteatomatous chronic suppurative otitis media among children. Int J Pediatr Otorhinolaryngol 75:1104–1108CrossRefPubMedGoogle Scholar
  16. 16.
    Roth RR, James WD (1988) Microbial ecology of the skin. Annu Rev Microbiol 42:441–464CrossRefPubMedGoogle Scholar
  17. 17.
    Kloos WE, Bannerman TL (1994) Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 7:117–140CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Huebner J, Goldmann DA (1999) Coagulase-negative staphylococci: role as pathogens. Annu Rev Med 50:223–236CrossRefPubMedGoogle Scholar
  19. 19.
    Piette A, Verschraegen G (2009) Role of coagulase-negative staphylococci in human disease. Vet Microbiol 134:45–54CrossRefPubMedGoogle Scholar
  20. 20.
    Paluch-Oles J, Magrys A, Koziol-Montewka M, Niedzielski A, Niedzwiadek J, Niedzielska G et al (2011) The phenotypic and genetic biofilm formation characteristics of coagulase-negative staphylococci isolates in children with otitis media. Int J Pediatr Otorhinolaryngol 75:126–130CrossRefPubMedGoogle Scholar
  21. 21.
    Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS Suppl 136:1–51CrossRefGoogle Scholar
  22. 22.
    Lee HJ, Park SK, Choi KY, Park SE, Chun YM, Kim KS et al (2012) Korean clinical practice guidelines: otitis media in children. J Korean Med Sci 27:835–848CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Choi E (2008) Direct and indirect effects of pneumococcal protein conjugate vaccine. J Korean Med Assoc 51:119–126CrossRefGoogle Scholar
  24. 24.
    Yang HI, Park EY, Kim MY (2013) National Immunization Survey in South Korea. Public Health Wkly Rep 7(21):449–454Google Scholar
  25. 25.
    Cho EY, Kang HM, Lee J, Kang JH, Choi EH, Lee HJ (2012) Changes in serotype distribution and antibiotic resistance of nasopharyngeal isolates of Streptococcus pneumoniae from children in Korea, after optional use of the 7-valent conjugate vaccine. J Korean Med Sci 27:716–722CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN et al (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32(Suppl 2):S114–S132CrossRefPubMedGoogle Scholar
  27. 27.
    Khatib R, Sharma M, Iyer S, Fakih MG, Obeid KM, Venugopal A et al (2013) Decreasing incidence of Staphylococcus aureus bacteremia over 9 years: greatest decline in community-associated methicillin-susceptible and hospital-acquired methicillin-resistant isolates. Am J Infect Control 41:210–213CrossRefPubMedGoogle Scholar
  28. 28.
    Gould IM (2005) The clinical significance of methicillin-resistant Staphylococcus aureus. J Hosp Infect 61:277–282CrossRefPubMedGoogle Scholar
  29. 29.
    Lee SK, Park DC, Kim MG, Boo SH, Choi YJ, Byun JY et al (2012) Rate of isolation and trends of antimicrobial resistance of multidrug resistant pseudomonas aeruginosa from otorrhea in chronic suppurative otitis media. Clin Exp Otorhinolaryngol 5:17–22CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weber SG, Gold HS, Hooper DC, Karchmer AW, Carmeli Y (2003) Fluoroquinolones and the risk for methicillin-resistant Staphylococcus aureus in hospitalized patients. Emerg Infect Dis 9:1415–1422CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of OtolaryngologyAjou University School of MedicineSuwonRepublic of Korea
  2. 2.Bk21 Plus Research Center for Biomedical SciencesAjou University Graduate School of MedicineSuwonRepublic of Korea

Personalised recommendations