Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 273, Issue 9, pp 2599–2605 | Cite as

Objective quantification of the vocal fold vascular pattern: comparison of narrow band imaging and white light endoscopy

  • Gerald Pliske
  • Susanne Voigt-Zimmermann
  • Sylvia Glaßer
  • Christoph Arens
Laryngology

Abstract

No clinical standard procedure has yet been defined to quantify the vascular pattern of vocal folds. Subjective classification trials have shown a lot of promise. Narrow band imaging (NBI) as an endoscopic imaging tool is useful, because it shows the vascular structure clearer than white light endoscopy (WL) alone. Endoscopic images of 74 human vocal folds (NBI and WL) were semi-automatically evaluated after image processing with respect to pixels of vessels and mucosa by the software MeVisLab. The ratios of vessel/mucosa pixels were compared. Using NBI, more vocal fold vessels are visible compared with WL alone (p = 0.000). There may be a difference between the right and left vocal folds due to the handedness of the examiner (p = 0.033) without any interaction between the method (NBI/WL) and the side (right/left) (p = 0.467). MeVisLab is a suitable tool for the objective quantification of the vessel/mucosa ratio for NBI and WL endoscopic images. NBI is an appropriate endoscopic tool for examination of diseases of vocal folds with changes in the vascular pattern. There is evidence that the handedness of the examiner may have an influence on the quality of the examination between the right and left vocal folds.

Keywords

Vocal fold Blood vessels Narrow band imaging MeVisLab Quantification 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that no conflict of interest exists.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Project Number: 107/14) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61CrossRefPubMedGoogle Scholar
  2. 2.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257CrossRefPubMedGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  4. 4.
    Yamada G, Kitamura Y, Kitada J, Yamada YI, Takahashi M, Fujii M, Takahashi H (2011) Increased microcirculation in subepitheliumial incasion of lung cancer. Intern Med 50:839–843CrossRefPubMedGoogle Scholar
  5. 5.
    Arens C, Piazza C, Anrea M et al (2015) Proposal for a descriptive guideline of vascular changes in lesions of the vocal folds by the committee on endoscopic laringea imaging of the European Laryngological Society. Eur Arch Otorhinolaryngol. doi: 10.1007/s00405-015-3851-y Google Scholar
  6. 6.
    Tateya I, Muto M, Morita S et al (2016) Endoscopic laryngo-pharyngeal surgery for superficial laryngo-pharyngeal cancer. Surg Endosc 30:323–329CrossRefPubMedGoogle Scholar
  7. 7.
  8. 8.
    Mizuno K, Gono K, Takehana S, Nonami T, Nakamura K (2003) Narrow band imaging techniaque. Tech Gastrointest Endosc 5:78–81CrossRefGoogle Scholar
  9. 9.
    Rossol S (2008) Endoscopic staining techniques in transistion—Narrow Band Imaging (NBI) and what else? Olymp Inft 2:4–7Google Scholar
  10. 10.
    Arens C, Vorwerk U, Just T, Betz CS, Kraft M (2012) Progress of endoscopic diagnosis of dysplasia and carcinoma of the larynx. HNO 60:44–52CrossRefPubMedGoogle Scholar
  11. 11.
    Vincent BD, Fraig M, Silverstri GA (2007) A pilot study of narrow-band imaging compared to white light bronchoscopy for evaluation of normal airways and premalignant and malignant airways disease. Chest 131:1794–1799CrossRefPubMedGoogle Scholar
  12. 12.
    Shibuya K, Nakajima T, Fujiwara et al (2010) Narrow band imaging with high-resolution bronchovideoscopy: a new approach for visualizing angiogensis in squamous cell carcinoma of the lung. Lung Cancer 69:194–202CrossRefPubMedGoogle Scholar
  13. 13.
    Suzuki H, Saito Y, Oda I, Kikuchi T, Kiriyama S, Fukunaga S (2012) Comparison of narrowband Imaging with autofluorescence imaging for endoscopic visualization of superficial squamous cell carcinoma lesions of the esophagus. Diagn Ther Endosc 2012:507597. doi: 10.1155/2012/507597 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Probst A, Bittinger M, Jechart G, Scheubel R, Arnholdt H, Messmann H (2006) Autofluoreszenzendoscopie (AF) and Narrow Band Imaging (NBI)—is a differentiation of colonic polyps in vivo possible? Z Gastroenterol 44:396CrossRefGoogle Scholar
  15. 15.
    Gi TP, Robin EA, Halmos GB, van Hemel BM, van den Heuvel ER, van der Laan BFAM, Plaat BEC, Dikkers FG (2012) Narrow band imaging is a new technique in visualisation of recurrent respiratory papillomatosis. Laryngoscope 122:1826–1830CrossRefGoogle Scholar
  16. 16.
    Yang H, Zheng Y, Chen Q et al (2012) The diagnostic value of narrow-band imaging for the detection of nasopharyngeal carcinoma. ORL 74:235–239CrossRefPubMedGoogle Scholar
  17. 17.
    Kraft M, Fostiropoulos K, Gürtler N, Arnoux A, Davaris N, Arens C (2015) Value of narrow band imaging in the early disgnosis of laryngeal cancer. Head Neck. doi: 10.1002/hed.23838 Google Scholar
  18. 18.
    Watanabe A, Tsujie H, Taniguchi M, Hosokawa M, Fujita M, Sasaki S (2006) Laryngoscopic detection of pharyngeal carcinoma in situ with narrowband imaging. Laryngoscope 116:650–654CrossRefPubMedGoogle Scholar
  19. 19.
    Voigt-Zimmermann Arens C (2014) Vascular lesions of vocal folds—part 1: horizontal vascular lesions. Laryngo-Rhino-Otol 93:819–830CrossRefGoogle Scholar
  20. 20.
    Arens C, Glanz H, Voigt-Zimmerman S (2015) Vascular lesions of vocal folds—part 2: perpendicular vascular lesions. Laryngo-Rhino-Otol 94:738–744CrossRefGoogle Scholar
  21. 21.
    Turkmen HI, Karsligil ME, Kocak I (2012) Assessment of videolaryngostroboscopy images based on visible vessels of vocal folds. Eng Med Biol Soc 2012:6251–6254. doi: 10.1109/EMBC.2012.6347423 Google Scholar
  22. 22.
    Mizuno K, Kudo S, Ohtsuka K, Hamatani S, Wada Y, Inoeu H, Aoyagi Y (2010) Narrow-banding images and structures of microvessels of colonc lesions. Dig Dis Sci 56:1811–1817CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kubota M, Murakami T, Nagano H et al (2012) Xenon-inhalation computed tomography for noninvasive quantitative measurement of tissue blood flow in pancreatic tumor. Dig Dis Sci 57:801–805CrossRefPubMedGoogle Scholar
  24. 24.
    Bai R, Cheng X, Qu H, Shen B, Han M, Wu Z (2009) Solitary pulmonary nodules: comparison of multi-slice computed tomography perfusion study with vascular endothelial growth factor and microvessel density. Chin Med J 122:541–547PubMedGoogle Scholar
  25. 25.
    Jiang HJ, Zhang ZR, Shen BZ, Wan Y, Guo H, Li JP (2009) Quantification of angiogenesis by CT perfusion imaging in liver tumor of rabbit. Hepatobiliary Pancreat Dis Int 8:168–173PubMedGoogle Scholar
  26. 26.
    Fasel JH, Majno PE, Peitgen HO (2010) Liver segments: an anatomical rationale for explaning inconsistencies with Couinaud´s eight-segment concept. Surg Radiol Anat 32:761–765CrossRefPubMedGoogle Scholar
  27. 27.
    Wilms GE, Willems E, Demaerel P, De Keyzer F (2012) CT volumentry of lumbar bodies in patients with hypoplasia L5 and bilateral spondylolysis and in normal controls. Neuroradiology 54:839–843CrossRefPubMedGoogle Scholar
  28. 28.
    http://www.mevislab.de/. Accessed 07 December 2015
  29. 29.
    Jähne B (2012) Digital image processing and image acquisition. Springer, Berlin, p 711Google Scholar
  30. 30.
    Frangi AF, Wiro JN, Koen LV, Max AV (1998) Multiscale vessel enhancement filtering. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, Berlin, pp 130–137Google Scholar
  31. 31.
    Piazza C, Cocco D, De Benedetto L, Del Bon F, Nicolai P, Peretti G (2010) Narrow band imaging and high definition television in the assessment of laryngeal cancer: a prospective study on 279 patients. Eur Arch Otorhinolaryngol 267(3):409–414. doi: 10.1007/s00405-009-1121-6 CrossRefPubMedGoogle Scholar
  32. 32.
    Piazza C, Cocco D, Del Bon F, Mangili S, Nicolai P, Majorana A, Bolzoni Villaret A, Peretti G (2010) Narrow band imaging and high definition television in evaluation of oral and oropharyngeal squamous cell cancer: a propective study. Oral Oncol 46:307–310CrossRefPubMedGoogle Scholar
  33. 33.
    Ni XG, He S, Xu ZG et al (2001) Endoscopic diagnosis of laryngeal cancer and precancerous lesions by narrow band imaging. J Laryngol Otol 125:288–296CrossRefGoogle Scholar
  34. 34.
    Schossee A, Voigt-Zimmermann S, Kropf S, Arens C (2015) Evaluation of a classification model of horizontal vascular lesions of the vocal fold. Laryngo-Rhino-Otol: doi: 10.1055/s-0035-1559677 Google Scholar
  35. 35.
    De Biase NG, de Lima Pontes PA (2008) Blood vessels of vocal folds. Arch Otolaryngol Head Neck Surg 134:720–724CrossRefPubMedGoogle Scholar
  36. 36.
    Zabrodsky M, Lukes P, Lukesova E, Boucek J, Plzak J (2014) The role of narrow band imaging in detection of recurrent laryngeal and hypopharyngeal cancer after curative radiotherapy. BioMed Res Int. doi: 10.1155/2014/175398 Google Scholar
  37. 37.
    Staniková L, Kucová H, Walderová R, Zelenik K, Satanková J, Kominek P (2015) Value of narrow band imaging endoscopy in detection of early laryngeal squamous cell carcinoma. Klin Onkol 28:116–120CrossRefPubMedGoogle Scholar
  38. 38.
    Wang WH, Tsai KY (2014) Narrow-band imaging of laryngeal images and endoscopically reflux esophagitis. Otolaryngol Head Neck Surg 152:874–880CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gerald Pliske
    • 1
  • Susanne Voigt-Zimmermann
    • 1
  • Sylvia Glaßer
    • 2
  • Christoph Arens
    • 1
  1. 1.Department of Otorhinolaryngology, University Hospital MagdeburgOtto-von-Guericke-UniversityMagdeburgGermany
  2. 2.Department of Simulation and GraphicsOtto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations