Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 274, Issue 2, pp 617–626 | Cite as

The possible mechanisms of the human microbiome in allergic diseases

  • Kagan Ipci
  • Niyazi Altıntoprak
  • Nuray Bayar Muluk
  • Mehmet Senturk
  • Cemal Cingi
Review Article

Abstract

In the present paper, we discuss the importance of the microbiome in allergic disease. In this review paper, the data from the Medline (PubMed) and search engine of Kirikkale University were systematically searched for all relevant articles in June 15th, 2015 for the past 30 years. The keywords of “microbiome”, “dysbiosis”, “allergy”, “allergic rhinitis”, “allergic disease”, “mechanisms” and “treatment” were used alone or together. In this paper, microbiomes were presented in terms of “Definition”, “Influence of \the human microbiome on health”, “The microbiome and allergic diseases”, and “Modulation of the gut microbiota in terms of treatment and prevention”. Microbiological dysbiosis is also reviewed. The microbiome is the genetic material of all microbes (bacteria, fungi, protozoa, and viruses) that live on or in the human body. Microbes outnumber human cells in a 10:1 ratio. Most microbes live in the gut, particularly the large intestine. Changes in the immune function of the respiratory tract are (at least in theory) linked to the immunomodulatory activity of the gut microbiota via the concept of a “common mucosal response”. The gut microbiota shapes systemic immunity, thus affecting the lung mucosa. Alternatively, changes in the gut microbiota may reflect alterations in the oropharyngeal microbiota, which may in turn directly affect the lung microbiota and host immune responses via microaspiration. Dysbiosis is defined as qualitative and quantitative changes in the intestinal flora; and modern diet and lifestyle, antibiotics, psychological and physical stress result in alterations in bacterial metabolism, as well as the overgrowth of potentially pathogenic microorganisms. All immune system components are directly or indirectly regulated by the microbiota. The nature of microbial exposure early in life appears to be important for the development of robust immune regulation; disruption of either the microbiota or the host response can trigger chronic inflammation. Dysbiosis is also an important clinical entity. Antibiotics, psychological and physical stress, and dietary factors contribute to intestinal dysbiosis.

Keywords

Microbiome Immune system Immunomodulatory activity B cell maturation Gut microbiota Dysbiosis 

Notes

Acknowledgments

“With exception of data collection, preparation of this paper including design and planning was supported by Continuous Education and Scientific Research Association”. There is no financial support. There is only scientific support.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Ott WR (1989) Human activity patterns: a review of the literature for estimating time spend indoors, outdoors and in transit. Proceedings of the Research Planning Conference on Human Activity Patterns, EPA/600/4-89/004 (EPA National Exposure Research Laboratory, Las Vegas), 1989, 3Google Scholar
  2. 2.
    Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A et al (2010) Generation of regulatory dendritic cells and CD4+ Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci USA 107(5):2159–2164CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS et al (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 108(13):5354–5359CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC et al (2014) House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci USA 111(2):805–810. doi: 10.1073/pnas.1310750111 (Epub 2013 Dec 16) CrossRefPubMedGoogle Scholar
  5. 5.
    Bermon S, Petriz B, Kajėnienė A, Prestes J, Castell L, Franco OL (2015) The microbiota: an exercise immunology perspective. Exerc Immunol Rev 21:70–79PubMedGoogle Scholar
  6. 6.
    Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417CrossRefPubMedGoogle Scholar
  7. 7.
    Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Gut microbiota: the neglected endocrine organ. Mol Endocrinol 28:1221–1238CrossRefPubMedGoogle Scholar
  8. 8.
    Hair M, Sharpe J. Fast facts about the human microbiome. http://depts.washington.edu/ceeh/downloads/FF_Microbiome.pdf. Accessed 21 June 2015
  9. 9.
    Morgan XC, Huttenhower C (2012) Chapter 12: human microbiome analysis. PLoS Comput Biol 8(12):e1002808. doi: 10.1371/journal.pcbi.1002808 (Epub 2012 Dec 27) CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS et al (2013) Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185(5):385–395CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Abreu NA, Nagalingam NA, Song Y, Roediger FC, Pletcher SD, Goldberg AN et al (2012) Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediatesrhinosinusitis. Sci Transl Med 4(151):151ra124. doi: 10.1126/scitranslmed.3003783 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Sáenz de Miera LE, Rodríguez-Aparicio LB et al (2012) Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac diseasepatients. Biochimie 94(8):1724–1729. doi: 10.1016/j.biochi.2012.03.025 (Epub 2012 Apr 20) CrossRefPubMedGoogle Scholar
  13. 13.
    Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249CrossRefPubMedGoogle Scholar
  14. 14.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341. doi: 10.1126/science.1198469 (Epub 2010 Dec 23) CrossRefPubMedGoogle Scholar
  15. 15.
    Hansen CH, Nielsen DS, Kverka M, Zakostelska Z, Klimesova K, Hudcovic T et al (2012) Patterns of early gut colonization shape future immune responses of the host. PLoS One 7(3):e34043. doi: 10.1371/journal.pone.0034043 (Epub 2012 Mar 27) CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kolokotroni O, Middleton N, Gavatha M, Lamnisos D, Priftis KN, Yiallouros PK (2012) Asthma and atopy in children born by caesarean section: effect modification by family history of allergies—a population based cross-sectional study. BMC Pediatr 12:179. doi: 10.1186/1471-2431-12-179 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498. doi: 10.1016/j.cell.2009.09.033 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Czerkinsky C, Prince SJ, Michalek SM, Jackson S, Russell MW, Moldoveanu Z et al (1987) IgA antibody-producing cells in peripheral blood after antigen ingestion: evidence for a common mucosal immune system in humans. Proc Natl Acad Sci USA 84:2449–2453CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kiyono H, Fukuyama S (2004) NALT-versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4:699–710CrossRefPubMedGoogle Scholar
  20. 20.
    Mestecky J (1987) The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol 7:265–276CrossRefPubMedGoogle Scholar
  21. 21.
    Huang YJ, Boushey HA (2015) The microbiome in asthma. J Allergy Clin Immunol 135(1):25–30. doi: 10.1016/j.jaci.2014.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Leyer GJ, Li S, Mubasher ME, Reifer C, Ouwehand AC (2009) Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124:e172–e179CrossRefPubMedGoogle Scholar
  23. 23.
    Razi CH, Harmanci K, Abaci A, Ozdemir O, Hizli S, Renda R et al (2010) The immunostimulant OM-85 BV prevents wheezing attacks in preschool children. J Allergy Clin Immunol 126:763–769CrossRefPubMedGoogle Scholar
  24. 24.
    Dickson RP, Erb-Downward JR, Huffnagle GB (2013) The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 7(3):245–257CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H et al (2013) Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol 14:40. doi: 10.1186/1471-2172-14-40 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD et al (2014) Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 20:642–647CrossRefPubMedGoogle Scholar
  27. 27.
    Lynch SV, Wood RA, Boushey H, Bacharier LB, Bloomberg GR, Kattan M et al (2014) Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol 134(593–601):e12Google Scholar
  28. 28.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRefPubMedGoogle Scholar
  29. 29.
    Hawrelak JA, Myers SP (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev. 9(2):180–197PubMedGoogle Scholar
  30. 30.
    Segal LN, Blaser MJ (2014) A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc. 11(Suppl 1):S21–S27. doi: 10.1513/AnnalsATS.201306-189MG CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB et al (2008) Specific microbiota direct the differentiation of IL-17–producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4):337–349CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341CrossRefPubMedGoogle Scholar
  33. 33.
    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB et al (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jiang HQ, Thurnheer MC, Zuercher AW, Boiko NV, Bos NA, Cebra JJ (2004) Interactions of commensal gut microbes with subsets of B- and T-cells in the murine host. Vaccine 22:805–811CrossRefPubMedGoogle Scholar
  35. 35.
    Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH (1995) Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol 102:448–455CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:1046S–1051SPubMedGoogle Scholar
  37. 37.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216CrossRefPubMedGoogle Scholar
  38. 38.
    West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ, Vuillermin P et al (2015) The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiotatherapies. J Allergy Clin Immunol 135(1):3–13. doi: 10.1016/j.jaci.2014.11.012 (quiz 14) CrossRefPubMedGoogle Scholar
  39. 39.
    Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rook GA (2013) Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci USA 110:18360–18367CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wold AE (1998) The hygiene hypothesis revised: is the rising frequency of allergy due to changes in the intestinal flora? Allergy 53:20–25CrossRefPubMedGoogle Scholar
  42. 42.
    Noverr MC, Huffnagle GB (2005) The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy 35:1511–1520CrossRefPubMedGoogle Scholar
  43. 43.
    Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC (2013) Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 44(6):842–850CrossRefGoogle Scholar
  44. 44.
    Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Muller G et al (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128(646–52):e1–e5Google Scholar
  45. 45.
    Sjogren YM, Jenmalm MC, Bottcher MF, Bjorksten B, Sverremark-Ekstrom E (2009) Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 39:518–526CrossRefPubMedGoogle Scholar
  46. 46.
    Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Toh ZQ, Anzela A, Tang ML, Licciardi PV (2012) Probiotic therapy as a novel approach for allergic disease. Front Pharmacol 3:171CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Storro O, Avershina E, Rudi K (2013) Diversity of intestinal microbiota in infancy and the risk of allergic disease in childhood. Curr Opin Allergy Clin Immunol 13:257–262CrossRefPubMedGoogle Scholar
  49. 49.
    Storrø O, Øien T, Langsrud Ø, Rudi K, Dotterud C, Johnsen R (2011) Temporal variations in early gut microbial colonization are associated with allergen-specificimmunoglobulin E but not atopic eczema at 2 years of age. Clin Exp Allergy. 41(11):1545-1554CrossRefPubMedGoogle Scholar
  50. 50.
    Hansel TT, Johnston SL, Openshaw PJ (2013) Microbes and mucosal immune responses in asthma. Lancet 381(9869):861–873CrossRefPubMedGoogle Scholar
  51. 51.
    Huang YJ (2013) Asthma microbiome studies and the potential for new therapeutic strategies. Curr Allergy Asthma Rep 13(5):453–461CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Suzaki H, Watanabe S, Pawankar R (2013) Rhinosinusitis and asthma-microbiome and new perspectives. Curr Opin Allergy Clin Immunol 13:45–49CrossRefPubMedGoogle Scholar
  53. 53.
    Marsland BJ (2012) Regulation of inflammatory responses by the commensal microbiota. Thorax 67:93–94CrossRefPubMedGoogle Scholar
  54. 54.
    Chalermwatanachai T, Velásquez LC, Bachert C (2015) The microbiome of the upper airways: focus on chronic rhinosinusitis. World Allergy Organ J. 8(1):3. doi: 10.1186/s40413-014-0048-6 (eCollection 2015) CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Renz H, Brandtzaeg P, Hornef M (2012) The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 12:9–23Google Scholar
  56. 56.
    Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238CrossRefPubMedGoogle Scholar
  57. 57.
    Garn H, Neves JF, Blumberg RS, Renz H (2013) Effect of barrier microbes on organbased inflammation. J Allergy Clin Immunol 131:1465–1478CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    West CE, Jenmalm MC, Prescott SL (2015) The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin Exp Allergy. 45(1):43–53 CrossRefPubMedGoogle Scholar
  59. 59.
    Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159:1739–1745PubMedGoogle Scholar
  60. 60.
    Cahenzli J, Koller Y, Wyss M, Geuking MB, McCoy KD (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:559–570CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sjögren YM, Tomicic S, Lundberg A, Böttcher MF, Björkstén B, Sverremark-Ekström E et al (2009) Influence of early gut microbiota on the maturation of childhood mucosaland systemic immune responses. Clin Exp Allergy 39(12):1842–1851. doi: 10.1111/j.1365-2222.2009.03326.x (Epub 2009 Sep 3) CrossRefPubMedGoogle Scholar
  62. 62.
    Wang S, Hibberd ML, Pettersson S, Lee YK (2014) Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways. PLoS One 9:e97523CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS et al (2013) Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185:385–394CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566CrossRefPubMedGoogle Scholar
  67. 67.
    Penders J, Gerhold K, Stobberingh EE, Thijs C, Zimmermann K, Lau S et al (2013) Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol 132(601–7):e8Google Scholar
  68. 68.
    Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD (2012) Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3:203–220CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227PubMedPubMedCentralGoogle Scholar
  70. 70.
    Karlström A, Lindgren H, Hildingsson I (2013) Maternal and infant outcome after caesarean section without recorded medical indication: findings from a Swedish case-control study. BJOG 120:479–486CrossRefPubMedGoogle Scholar
  71. 71.
    Kolokotroni O, Middleton N, Gavatha M, Lamnisos D, Priftis KN, Yiallouros PK (2012) Asthma and atopy in children born by caesarean section: effect modification by family history of allergies—a population based cross-sectional study. BMC Pediatr 12:179CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Li H, Ye R, Pei L, Ren A, Zheng X, Liu J (2014) Caesarean delivery, caesarean delivery on maternal request and childhood overweight: a Chinese birth cohort study of 181,380 children. Pediatr Obes 9:10–16CrossRefPubMedGoogle Scholar
  73. 73.
    Stene LC, Gale EA (2013) The prenatal environment and type 1 diabetes. Diabetologia 56:1888–1897CrossRefPubMedGoogle Scholar
  74. 74.
    Magnus MC, Haberg SE, Stigum H, Nastad P, London SJ, Vangen S et al (2011) Delivery by cesarean section and early childhood respiratory symptoms and disorders: the Norwegian mother and child cohort study. Am J Epidemiol 174:1275–1285CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR (2008) A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy 38:629–633CrossRefPubMedGoogle Scholar
  76. 76.
    Hughes C, Davoodi-Semiromi Y, Colee JC, Culpepper T, Dahl WJ, Mai V et al (2011) Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: a randomized, double-blind, controlled trial in healthy university students. Am J Clin Nutr 93:1305–1311CrossRefPubMedGoogle Scholar
  77. 77.
    Penders J, Gerhold K, Stobberingh EE, Thijs C, Zimmermann K, Lau S, Hamelmann E (2013) Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol 32:601–607CrossRefGoogle Scholar
  78. 78.
    Tsuji H, Oozeer R, Matsuda K, MatsukiT Ohta T, Nomoto K et al (2012) Molecular monitoring of the development of intestinal microbiota in Japanese infants. Benef Microbes 3:113–125CrossRefPubMedGoogle Scholar
  79. 79.
    Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC (2012) Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129:434–440CrossRefPubMedGoogle Scholar
  80. 80.
    Bisgaard H, Li N, Bonnelykke K, Bonnelykke K, Chawes BL, Skoy T et al (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128:646–652CrossRefPubMedGoogle Scholar
  81. 81.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Wang M, Karlsson C, Olsson C, Alderberth I, Wold AE, Strachan DP et al (2008) Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol 121:129–134CrossRefPubMedGoogle Scholar
  83. 83.
    Legatzki A, Rösler B, von Mutius E (2014) Microbiome diversity and asthma and allergy risk. Curr Allergy Asthma Rep. 14(10):466. doi: 10.1007/s11882-014-0466-0 CrossRefPubMedGoogle Scholar
  84. 84.
    Melli LC, do Carmo-Rodrigues MS, Araújo-Filho HB, Solé D, de Morais MB (2015) Intestinal microbiota and allergic diseases: a systematic review. Allergol Immunopathol (Madr). doi: 10.1016/j.aller.2015.01.013. (Epub ahead of print)
  85. 85.
    Martinez FD (2014) The human microbiome. Early life determinant of health outcomes. Ann Am Thorac Soc 11(Suppl 1):S7–S12. doi: 10.1513/AnnalsATS.201306-186MG CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. World Health Organization, OntarioGoogle Scholar
  87. 87.
    Fiocchi A, Burks W, Bahna SL, Bielory L, Boyle RJ, Cocco R et al (2012) Clinical Use of Probiotics in Pediatric Allergy (CUPPA): a World Allergy Organization position paper. World Allergy Organ J 5:148–167CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    West CE (2014) Gut microbiota and allergic disease: new findings. Curr Opin Clin Nutr Metab Care 17:261–266CrossRefPubMedGoogle Scholar
  89. 89.
    Hao Q, Lu Z, Dong BR, Huang CQ, Wu T (2011) Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev (9):CD006895. doi: 10.1002/14651858.CD006895.pub2
  90. 90.
    Kalliomäki M, Salminen S, Poussa T, Isolauri E (2007) Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebocontrolled trial. J Allergy Clin Immunol 119:1019–1021CrossRefPubMedGoogle Scholar
  91. 91.
    Jensen MP, Meldrum S, Taylor AL, Dunstan JA, Prescott SL (2012) Early probiotic supplementation for allergy prevention: long-term outcomes. J Allergy Clin Immunol 130:1209–1211.e5CrossRefPubMedGoogle Scholar
  92. 92.
    West CE, Hammarström ML, Hernell O (2013) Probiotics in primary prevention of allergic disease–follow-up at 8–9 years of age. Allergy 68(8):1015–1020. doi: 10.1111/all.12191 (Epub 2013 Jul 30) CrossRefPubMedGoogle Scholar
  93. 93.
    Abrahamsson TR, Jakobsson T, Björkstén B, Oldaeus G, Jenmalm MC (2013) No effect of probiotics on respiratory allergies: a 7-yearfollow-up of a randomized controlled trial in infancy. Pediatr Allergy Immunol 24(6):556–561. doi: 10.1111/pai.12104 (Epub 2013 Jul 31) CrossRefPubMedGoogle Scholar
  94. 94.
    Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK et al (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 111:13145–13150CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kuitunen M, Kukkonen K, Juntunen-Backman K, Korpela R, Poussa T, Tuure T et al (2009) Probiotics prevent IgE-associated allergy until age 5 years in cesarean delivered children but not in the total cohort. J Allergy Clin Immunol 123:335–341CrossRefPubMedGoogle Scholar
  96. 96.
    Ellwood P, Asher MI, Garcia-Marcos L, Williams H, Keil U, Robertson C et al (2013) Do fast foods cause asthma, rhinoconjunctivitis and eczema? Global findings from the International Study of Asthma and Allergies in Childhood (ISAAC) phase three. Thorax 68:351–360CrossRefPubMedGoogle Scholar
  97. 97.
    Thorburn AN, Macia L, Mackay CR (2014) Diet, metabolites, and ‘‘western-lifestyle’’ inflammatory diseases. Immunity 40:833–842CrossRefPubMedGoogle Scholar
  98. 98.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Osborn DA, Sinn JK (2013) Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev (3):CD006474. doi: 10.1002/14651858.CD006474.pub3
  100. 100.
    Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M (2013) Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145:946–953CrossRefPubMedGoogle Scholar
  101. 101.
    Kassam Z, Lee CH, Yuan Y, Hunt RH (2013) Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 108:500–508CrossRefPubMedGoogle Scholar
  102. 102.
    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368(5):407–415CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kagan Ipci
    • 1
  • Niyazi Altıntoprak
    • 2
  • Nuray Bayar Muluk
    • 3
    • 6
  • Mehmet Senturk
    • 4
  • Cemal Cingi
    • 5
  1. 1.ENT ClinicsAnkara Koru HospitalAnkaraTurkey
  2. 2.ENT ClinicsTuzla State HospitalIstanbulTurkey
  3. 3.ENT Department, Medical FacultyKırıkkale UniversityKırıkkaleTurkey
  4. 4.ENT ClinicsKonya Training and Research HospitalKonyaTurkey
  5. 5.ENT Department, Medical FacultyEskisehir Osmangazi UniversityEskisehirTurkey
  6. 6.Çankaya/AnkaraTurkey

Personalised recommendations