European Archives of Oto-Rhino-Laryngology

, Volume 273, Issue 11, pp 3609–3613 | Cite as

Optimisation of the round window opening in cochlear implant surgery in wet and dry conditions: impact on intracochlear pressure changes

Otology

Abstract

To preserve residual hearing in cochlear implant candidates, the atraumatic insertion of the cochlea electrode has become a focus of cochlea implant research. In a previous study, intracochlear pressure changes during the opening of the round window membrane were investigated. In the current study, intracochlear pressure changes during opening of the round window membrane under dry and transfluid conditions were investigated. Round window openings were performed in an artificial cochlear model. Intracochlear pressure changes were measured using a micro-optical pressure sensor, which was placed in the apex. Openings of the round window membrane were performed under dry and wet conditions using a cannula and a diode laser. Statistically significant differences in the intracochlear pressure changes were seen between the different methods used for opening of the round window membrane. Lower pressure changes were seen by opening the round window membrane with the diode laser than with the cannula. A significant difference was seen between the dry and wet conditions. The atraumatic approach to the cochlea is assumed to be essential for the preservation of residual hearing. Opening of the round window under wet conditions produce a significant advantage on intracochlear pressure changes in comparison to dry conditions by limiting negative outward pressure.

Keywords

Intracochlear pressure Round window Cochlear implant 

Notes

Compliance with ethical standards

Conflict of interest

This study was supported by Advanced Bionics, Stäfa, Switzerland.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Havenith S, Lammers MJ, Tange RA, Trabalzini F, della Volpe A, van der Heijden GJ, Grolman W (2013) Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol 34(4):667–674. doi:10.1097/MAO.0b013e318288643e CrossRefPubMedGoogle Scholar
  2. 2.
    Aschendorff A, Kromeier J, Klenzner T, Laszig R (2007) Quality control after insertion of the nucleus contour and contour advance electrode in adults. Ear Hear 28(2 Suppl):75S–79S. doi:10.1097/AUD.0b013e318031542e CrossRefPubMedGoogle Scholar
  3. 3.
    Lehnhardt E (1993) Intracochlear placement of cochlear implant electrodes in soft surgery technique. HNO 41(7):356–359PubMedGoogle Scholar
  4. 4.
    Cipolla MJ, Iyer P, Dome C, Welling DB, Bush ML (2012) Modification and comparison of minimally invasive cochleostomy techniques: a pilot study. Laryngoscope 122(5):1142–1147. doi:10.1002/lary.23231 CrossRefPubMedGoogle Scholar
  5. 5.
    Fishman AJ, Moreno LE, Rivera A, Richter CP (2010) CO(2) laser fiber soft cochleostomy: development of a technique using human temporal bones and a guinea pig model. Lasers Surg Med 42(3):245–256. doi:10.1002/lsm.20902 CrossRefPubMedGoogle Scholar
  6. 6.
    Todt I, Mittmann P, Ernst A (2014) Intracochlear fluid pressure changes related to the insertional speed of a CI electrode. BioMed Res Int 2014:507241. doi:10.1155/2014/507241 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Todt I, Ernst A, Mittmann P (2016) Effects of round window opening size and moisturized electrodes on the intracochlear pressure related to the insertion of a cochlear implant electrode. Audiol Neurotol Extra 16(6):1–8. doi:10.1159/000442515 CrossRefGoogle Scholar
  8. 8.
    Mittmann P, Ernst A, Todt I (2014) Intracochlear pressure changes due to round window opening: a model experiment. The Sci World J 2014:341075. doi:10.1155/2014/341075 CrossRefGoogle Scholar
  9. 9.
    Olson ES (1998) Observing middle and inner ear mechanics with novel intracochlear pressure sensors. J Acoust Soc Am 103(6):3445–3463CrossRefPubMedGoogle Scholar
  10. 10.
    Adunka O, Unkelbach MH, Mack M, Hambek M, Gstoettner W, Kiefer J (2004) Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: a histologically controlled insertion study. Acta Otolaryngol 124(7):807–812. doi:10.1080/00016480410018179 CrossRefPubMedGoogle Scholar
  11. 11.
    Richard C, Fayad JN, Doherty J, Linthicum FH Jr (2012) Round window versus cochleostomy technique in cochlear implantation: histologic findings. Otol Neurotol 33(7):1181–1187. doi:10.1097/MAO.0b013e318263d56d CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wanna GB, Noble JH, Carlson ML, Gifford RH, Dietrich MS, Haynes DS, Dawant BM, Labadie RF (2014) Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope 124(Suppl 6):S1–S7. doi:10.1002/lary.24728 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Briggs RJ, Tykocinski M, Xu J, Risi F, Svehla M, Cowan R, Stover T, Erfurt P, Lenarz T (2006) Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode. Audiol Neurootol 11(Suppl 1):42–48. doi:10.1159/000095613 CrossRefPubMedGoogle Scholar
  14. 14.
    Yoon YJ, Puria S, Steele CR (2006) Intracochlear pressure and organ of corti impedance from a linear active three-dimensional model. ORL J Otorhinolaryngol Relat Spec 68(6):365–372. doi:10.1159/000095279 CrossRefPubMedGoogle Scholar
  15. 15.
    de la Rochefoucauld O, Decraemer WF, Khanna SM, Olson ES (2008) Simultaneous measurements of ossicular velocity and intracochlear pressure leading to the cochlear input impedance in gerbil. J Assoc Res Otolaryngol: JARO 9(2):161–177. doi:10.1007/s10162-008-0115-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Stieger C, Rosowski JJ, Nakajima HH (2013) Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea. Hear Res 301:105–114. doi:10.1016/j.heares.2012.11.005 CrossRefPubMedGoogle Scholar
  17. 17.
    Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68(6):1676–1689CrossRefPubMedGoogle Scholar
  18. 18.
    Park JJ, Boeven JJ, Vogel S, Leonhardt S, Wit HP, Westhofen M (2012) Hydrostatic fluid pressure in the vestibular organ of the guinea pig. Eur Arch Otorhinolaryngol 269(7):1755–1758. doi:10.1007/s00405-011-1813-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Dunn LT (2002) Raised intracranial pressure. J Neurol Neurosurg Psychiatry 73(Suppl 1):i23–i27CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Graham JM, Ashcroft P (1999) Direct measurement of cerebrospinal fluid pressure through the cochlea in a congenitally deaf child with Mondini dysplasia undergoing cochlear implantation. Am J Otol 20(2):205–208PubMedGoogle Scholar
  21. 21.
    Park JJ, Shen A, Keil S, Kraemer N, Westhofen M (2014) Radiological findings of the cochlear aqueduct in patients with Meniere’s disease using high-resolution CT and high-resolution MRI. Eur Arch Otorhinolaryngol 271(12):3325–3331. doi:10.1007/s00405-014-3199-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Philipp Mittmann
    • 1
  • A. Ernst
    • 1
  • M. Mittmann
    • 1
  • I. Todt
    • 1
  1. 1.Department of Otolaryngology, Head and Neck SurgeryUnfallkrankenhaus BerlinBerlinGermany

Personalised recommendations