European Archives of Oto-Rhino-Laryngology

, Volume 273, Issue 2, pp 325–332 | Cite as

Expression of immediate-early genes in the dorsal cochlear nucleus in salicylate-induced tinnitus

  • Shou-Sen Hu
  • Ling Mei
  • Jian-Yong Chen
  • Zhi-Wu HuangEmail author
  • Hao Wu


Spontaneous neuronal activity in dorsal cochlear nucleus (DCN) may be involved in the physiological processes underlying salicylate-induced tinnitus. As a neuronal activity marker, immediate-early gene (IEG) expression, especially activity-dependent cytoskeletal protein (Arc/Arg3.1) and the early growth response gene-1 (Egr-1), appears to be highly correlated with sensory-evoked neuronal activity. However, their relationships with tinnitus induced by salicylate have rarely been reported in the DCN. In this study, we assessed the effect of acute and chronic salicylate treatment on the expression of N-methyl D-aspartate receptor subunit 2B (NR2B), Arg3.1, and Egr-1. We also observed ultrastructural alterations in the DCN synapses in an animal model of tinnitus. Levels of mRNA and protein expression of NR2B and Arg3.1 were increased in rats that were chronically administered salicylate (200 mg/kg, twice daily for 3, 7, or 14 days). These levels returned to baseline 14 days after cessation of treatment. However, no significant changes were observed in Egr-1 gene expression in any groups. Furthermore, rats subjected to long-term salicylate administration showed more presynaptic vesicles, thicker and longer postsynaptic densities, and increased synaptic interface curvature. Alterations of Arg3.1 and NR2B may be responsible for the changes in the synaptic ultrastructure. These changes confirm that salicylate can cause neural plasticity changes at the DCN level.


Tinnitus Arg3.1 Egr-1 NR2B Dorsal cochlear nucleus 



This study was supported by the National Natural Science Foundation of China (Grant Nos 81170917 and 30973298) and by the Creative Project of the Shanghai Municipal Education Committee (Grant No. 12ZZ103) to Zhi-Wu Huang.

Conflict of interest

The authors do not have any possible conflicts of interest.


  1. 1.
    Paul AK, Lobarinas E, Simmons R, Wack D, Luisi JC, Spernyak J, Mazurchuk R, Abdel-Nabi H, Salvi R (2009) Metabolic imaging of rat brain during pharmacologically-induced tinnitus. Neuroimage 44(2):312–318. doi: 10.1016/j.neuroimage.2008.09.024 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Yu N, Zhu ML, Johnson B, Liu YP, Jones RO, Zhao HB (2008) Prestin up-regulation in chronic salicylate (aspirin) administration: an implication of functional dependence of prestin expression. Cell Mol Life Sci 65(15):2407–2418. doi: 10.1007/s00018-008-8195-y PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kaltenbach JA, Godfrey DA (2008) Dorsal cochlear nucleus hyperactivity and tinnitus: are they related? Am J Audiol 17(2):S148–S161. doi: 10.1044/1059-0889(2008/08-0004 PubMedCrossRefGoogle Scholar
  4. 4.
    Baizer JS, Manohar S, Paolone NA, Weinstock N, Salvi RJ (2012) Understanding tinnitus: the dorsal cochlear nucleus, organization and plasticity. Brain Res 1485:40–53. doi: 10.1016/j.brainres.2012.03.044 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kaltenbach JA, Zacharek MA, Zhang J, Frederick S (2004) Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett 355(1–2):121–125PubMedCrossRefGoogle Scholar
  6. 6.
    Robertson D, Bester C, Vogler D, Mulders WH (2013) Spontaneous hyperactivity in the auditory midbrain: relationship to afferent input. Hear Res 295:124–129. doi: 10.1016/j.heares.2012.02.002 PubMedCrossRefGoogle Scholar
  7. 7.
    Moller AR (2007) The role of neural plasticity in tinnitus. Prog Brain Res 166:37–45. doi: 10.1016/S0079-6123(07)66003-8 PubMedCrossRefGoogle Scholar
  8. 8.
    Okuno H (2011) Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69(3):175–186. doi: 10.1016/j.neures.2010.12.007 PubMedCrossRefGoogle Scholar
  9. 9.
    Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340(6233):474–476. doi: 10.1038/340474a0 PubMedCrossRefGoogle Scholar
  10. 10.
    Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52(3):475–484. doi: 10.1016/j.neuron.2006.08.034 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A, Mahlke C, Welzl H, Kobalz U, Stawrakakis A, Fernandez E, Waltereit R, Bick-Sander A, Therstappen E, Cooke SF, Blanquet V, Wurst W, Salmen B, Bosl, Lipp HP, Grant SG, Bliss TV, Wolfer DP, Kuhl D (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52(3):437–444. doi: 10.1016/j.neuron.2006.08.024 PubMedCrossRefGoogle Scholar
  12. 12.
    Davis S, Renaudineau S, Poirier R, Poucet B, Save E, Laroche S (2010) The formation and stability of recognition memory: what happens upon recall? Front Behav Neurosci 4177. doi: 10.3389/fnbeh.2010.00177
  13. 13.
    Lobarinas E, Hayes SH, Allman BL (2013) The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Hear Res 295:150–160. doi: 10.1016/j.heares.2012.06.001 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, Borland MS, Kilgard MP (2011) Reversing pathological neural activity using targeted plasticity. Nature 470(7332):101–104. doi: 10.1038/nature09656 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yang G, Lobarinas E, Zhang L, Turner J, Stolzberg D, Salvi R, Sun W (2007) Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res 226(1–2):244–253. doi: 10.1016/j.heares.2006.06.013 PubMedCrossRefGoogle Scholar
  16. 16.
    Huang ZW, Luo Y, Wu Z, Tao Z, Jones RO, Zhao HB (2005) Paradoxical enhancement of active cochlear mechanics in long-term administration of salicylate. J Neurophysiol 93(4):2053–2061. doi: 10.1152/jn.00959.2004 PubMedCrossRefGoogle Scholar
  17. 17.
    Yang K, Huang ZW, Liu ZQ, Xiao BK, Peng JH (2009) Long-term administration of salicylate enhances prestin expression in rat cochlea. Int J Audiol 48(1):18–23. doi: 10.1080/14992020802327998 PubMedCrossRefGoogle Scholar
  18. 18.
    Su YY, Luo B, Jin Y, Wu SH, Lobarinas E, Salvi RJ, Chen L (2012) Altered neuronal intrinsic properties and reduced synaptic transmission of the rat’s medial geniculate body in salicylate-induced tinnitus. PLoS One 7(10):e46969. doi: 10.1371/journal.pone.0046969 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Brozoski TJ, Bauer CA (2005) The effect of dorsal cochlear nucleus ablation on tinnitus in rats. Hear Res 206(1–2):227–236. doi: 10.1016/j.heares.2004.12.013 PubMedCrossRefGoogle Scholar
  20. 20.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  21. 21.
    Juiz JM, Lujan R, Dominguez del Toro E, Fuentes V, Ballesta JJ, Criado M (2000) Subcellular compartmentalization of a potassium channel (Kv1.4): preferential distribution in dendrites and dendritic spines of neurons in the dorsal cochlear nucleus. Eur J Neurosci 12(12):4345–4356PubMedGoogle Scholar
  22. 22.
    Guldner FH, Ingham CA (1980) Increase in postsynaptic density material in optic target neurons of the rat suprachiasmatic nucleus after bilateral enucleation. Neurosci Lett 17(1–2):27–31PubMedCrossRefGoogle Scholar
  23. 23.
    Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294(5544):1030–1038. doi: 10.1126/science.1067020 PubMedCrossRefGoogle Scholar
  24. 24.
    Luscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4(6). doi: 10.1101/cshperspect.a005710
  25. 25.
    Sobrio F, Gilbert G, Perrio C, Barre L, Debruyne D (2010) PET and SPECT imaging of the NMDA receptor system: an overview of radiotracer development. Mini Rev Med Chem 10(9):870–886PubMedCrossRefGoogle Scholar
  26. 26.
    Petralia RS, Rubio ME, Wang YX, Wenthold RJ (2000) Differential distribution of glutamate receptors in the cochlear nuclei. Hear Res 147(1–2):59–69PubMedCrossRefGoogle Scholar
  27. 27.
    Kaltenbach JA, Zhang J, Finlayson P (2005) Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hear Res 206(1–2):200–226. doi: 10.1016/j.heares.2005.02.013 PubMedCrossRefGoogle Scholar
  28. 28.
    Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55(7):1081–1094. doi: 10.1016/j.neuropharm.2008.07.046 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ramirez-Amaya V, Vazdarjanova A, Mikhael D, Rosi S, Worley PF, Barnes CA (2005) Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J Neurosci 25(7):1761–1768. doi: 10.1523/JNEUROSCI.4342-04.2005 PubMedCrossRefGoogle Scholar
  30. 30.
    Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2(12):1120–1124. doi: 10.1038/16046 PubMedCrossRefGoogle Scholar
  31. 31.
    Tagawa Y, Kanold PO, Majdan MShatz CJ (2005) Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nat Neurosci 8(3):380–388. doi: 10.1038/nn1410 PubMedCrossRefGoogle Scholar
  32. 32.
    French PJ, O’Connor V, Jones MW, Davis S, Errington ML, Voss K, Truchet B, Wotjak C, Stean T, Doyere V, Maroun M, Laroche S, Bliss TV (2001) Subfield-specific immediate early gene expression associated with hippocampal long-term potentiation in vivo. Eur J Neurosci 13(5):968–976PubMedCrossRefGoogle Scholar
  33. 33.
    Hughes P, Lawlor P, Dragunow M (1992) Basal expression of Fos, Fos-related, Jun, and Krox 24 proteins in rat hippocampus. Brain Res Mol Brain Res 13(4):355–357PubMedCrossRefGoogle Scholar
  34. 34.
    Steward O, Worley PF (2001) A cellular mechanism for targeting newly synthesized mRNAs to synaptic sites on dendrites. Proc Natl Acad Sci USA 98(13):7062–7068. doi: 10.1073/pnas.131146398 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Steward O, Worley PF (2001) Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30(1):227–240PubMedCrossRefGoogle Scholar
  36. 36.
    Cazals Y, Horner KC, Huang ZW (1998) Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: a plausible index of tinnitus. J Neurophysiol 80(4):2113–2120PubMedGoogle Scholar
  37. 37.
    Du X, Chen K, Choi CH, Li W, Cheng W, Stewart C, Hu N, Floyd RA, Kopke RD (2012) Selective degeneration of synapses in the dorsal cochlear nucleus of chinchilla following acoustic trauma and effects of antioxidant treatment. Hear Res 283(1–2):1–13. doi: 10.1016/j.heares.2011.11.013 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shou-Sen Hu
    • 1
    • 2
  • Ling Mei
    • 1
    • 2
  • Jian-Yong Chen
    • 1
    • 2
  • Zhi-Wu Huang
    • 1
    • 2
    Email author
  • Hao Wu
    • 1
    • 2
  1. 1.Department of Otolaryngology-Head and Neck Surgery, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations