European Archives of Oto-Rhino-Laryngology

, Volume 272, Issue 10, pp 2807–2813 | Cite as

Seasonal trends in tinnitus symptomatology: evidence from Internet search engine query data

  • David T. PlanteEmail author
  • David G. Ingram


The primary aim of this study was to test the hypothesis that the symptom of tinnitus demonstrates a seasonal pattern with worsening in the winter relative to the summer using Internet search engine query data. Normalized search volume for the term ‘tinnitus’ from January 2004 through December 2013 was retrieved from Google Trends. Seasonal effects were evaluated using cosinor regression models. Primary countries of interest were the United States and Australia. Secondary exploratory analyses were also performed using data from Germany, the United Kingdom, Canada, Sweden, and Switzerland. Significant seasonal effects for ‘tinnitus’ search queries were found in the United States and Australia (p < 0.00001 for both countries), with peaks in the winter and troughs in the summer. Secondary analyses demonstrated similarly significant seasonal effects for Germany (p < 0.00001), Canada (p < 0.00001), and Sweden (p = 0.0008), again with increased search volume in the winter relative to the summer. Our findings indicate that there are significant seasonal trends for Internet search queries for tinnitus, with a zenith in winter months. Further research is indicated to determine the biological mechanisms underlying these findings, as they may provide insights into the pathophysiology of this common and debilitating medical symptom.


Tinnitus Seasonal Circannual Internet Google Trends 



We greatly appreciate the efforts of Logan Zweifel, who assisted with collection of data used in these analyses. We also acknowledge Kenneth Lewoczko, M.D., who provided valuable feedback on the manuscript during preparation.

Conflict of interest

Dr. Plante is supported by unrelated research grants from the American Sleep Medicine Foundation, Brain and Behavior Research Foundation, and the National Institute of Mental Health (K23MH099234). He has also received royalties from Cambridge University Press. Dr. Ingram reports no conflicts of interest.


  1. 1.
    Baguley D, McFerran D, Hall D (2013) Tinnitus. Lancet 382(9904):1600–1607. doi: 10.1016/S0140-6736(13)60142-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Langguth B, Kreuzer PM, Kleinjung T, De Ridder D (2013) Tinnitus: causes and clinical management. Lancet Neurol 12(9):920–930. doi: 10.1016/S1474-4422(13)70160-1 CrossRefPubMedGoogle Scholar
  3. 3.
    Izuhara K, Wada K, Nakamura K, Tamai Y, Tsuji M, Ito Y, Nagata C (2013) Association between tinnitus and sleep disorders in the general Japanese population. Ann Otol Rhinol Laryngol 122(11):701–706CrossRefPubMedGoogle Scholar
  4. 4.
    Friberg E, Jansson C, Mittendorfer-Rutz E, Rosenhall U, Alexanderson K (2012) Sickness absence due to otoaudiological diagnoses and risk of disability pension: a nationwide Swedish prospective cohort study. PLoS ONE 7(1):e29966. doi: 10.1371/journal.pone.0029966 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Sindhusake D, Golding M, Newall P, Rubin G, Jakobsen K, Mitchell P (2003) Risk factors for tinnitus in a population of older adults: the blue mountains hearing study. Ear Hear 24(6):501–507. doi: 10.1097/01.AUD.0000100204.08771.3D CrossRefPubMedGoogle Scholar
  6. 6.
    Gopinath B, McMahon CM, Rochtchina E, Karpa MJ, Mitchell P (2010) Risk factors and impacts of incident tinnitus in older adults. Ann Epidemiol 20(2):129–135. doi: 10.1016/j.annepidem.2009.09.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Nondahl DM, Cruickshanks KJ, Huang GH, Klein BE, Klein R, Nieto FJ, Tweed TS (2011) Tinnitus and its risk factors in the Beaver Dam offspring study. Int J Audiol 50(5):313–320. doi: 10.3109/14992027.2010.551220 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Derebery MJ, Berliner KI (1998) Allergy for the otologist. External canal to inner ear. Otolaryngol Clin North Am 31(1):157–173CrossRefPubMedGoogle Scholar
  9. 9.
    Yang AC, Huang NE, Peng CK, Tsai SJ (2010) Do seasons have an influence on the incidence of depression? The use of an Internet search engine query data as a proxy of human affect. PLoS ONE 5(10):e13728. doi: 10.1371/journal.pone.0013728 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Stockmann C, Ampofo K, Hersh AL, Carleton ST, Korgenski K, Sheng X, Pavia AT, Byington CL (2013) Seasonality of acute otitis media and the role of respiratory viral activity in children. Pediatr Infect Dis J 32(4):314–319. doi: 10.1097/INF.0b013e31827d104e PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Atkinson M (1947) Tinnitus aurium; some considerations concerning its origin and treatment. Arch Otolaryngol 45(1):68–76CrossRefPubMedGoogle Scholar
  12. 12.
    Hilger JA (1949) Autonomic dysfunction in the inner ear. Laryngoscope 59(1):1–11. doi: 10.1288/00005537-194901000-00001 CrossRefPubMedGoogle Scholar
  13. 13.
    Bilecki MM, Bernarde GE, Mezzalira R, Maestri JE, Cardoso JM, Avila FG (2005) Seasonality in vestibular disorders. Int Tinnitus J 11(2):185–188PubMedGoogle Scholar
  14. 14.
    Inaba R, Kurokawa J, Mirbod SM (2009) Comparison of subjective symptoms and cold prevention measures in winter between traffic control workers and construction workers in Japan. Ind Health 47(3):283–291CrossRefPubMedGoogle Scholar
  15. 15.
    Inaba R, Mirbod SM (2010) Subjective musculoskeletal symptoms in winter and summer among indoor working construction electricians. Ind Health 48(1):29–37CrossRefPubMedGoogle Scholar
  16. 16.
    Jourdy DN, Donatelli LA, Victor JD, Selesnick SH (2010) Assessment of variation throughout the year in the incidence of idiopathic sudden sensorineural hearing loss. Otol Neurotol 31(1):53–57. doi: 10.1097/MAO.0b013e3181c4c2d6 CrossRefPubMedGoogle Scholar
  17. 17.
    Eysenbach G, Kohler C (2003) What is the prevalence of health-related searches on the World Wide Web? Qualitative and quantitative analysis of search engine queries on the Internet. AMIA Annu Symp Proc, pp 225–229Google Scholar
  18. 18.
    Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2009) Detecting influenza epidemics using search engine query data. Nature 457(7232):1012–1014. doi: 10.1038/nature07634 CrossRefPubMedGoogle Scholar
  19. 19.
    Ayers JW, Althouse BM, Allem JP, Rosenquist JN, Ford DE (2013) Seasonality in seeking mental health information on Google. Am J Prev Med 44(5):520–525. doi: 10.1016/j.amepre.2013.01.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Ayers JW, Ribisl K, Brownstein JS (2011) Using search query surveillance to monitor tax avoidance and smoking cessation following the United States’ 2009 “SCHIP” cigarette tax increase. PLoS ONE 6(3):e16777. doi: 10.1371/journal.pone.0016777 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Carr LJ, Dunsiger SI (2012) Search query data to monitor interest in behavior change: application for public health. PLoS ONE 7(10):e48158. doi: 10.1371/journal.pone.0048158 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Ingram DG, Plante DT (2013) Seasonal trends in restless legs symptomatology: evidence from Internet search query data. Sleep Med 14(12):1364–1368. doi: 10.1016/j.sleep.2013.06.016 CrossRefPubMedGoogle Scholar
  23. 23.
    Ingram DG, Matthews CK, Plante DT (2014) Seasonal trends in sleep-disordered breathing: evidence from Internet search engine query data. Sleep Breath. doi: 10.1007/s11325-014-0965-1 PubMedGoogle Scholar
  24. 24.
    Braun T, Harréus U (2013) Medical nowcasting using Google Trends: application in otolaryngology. Eur Arch Otorhinolaryngol 270(7):2157–2160. doi: 10.1007/s00405-013-2532-y CrossRefPubMedGoogle Scholar
  25. 25.
    Barnett A, Baker P, Dobson AJ (2012) Analysing seasonal data. R Journal 4(1):5–10Google Scholar
  26. 26.
    Rossignol L, Pelat C, Lambert B, Flahault A, Chartier-Kastler E, Hanslik T (2013) A method to assess seasonality of urinary tract infections based on medication sales and Google Trends. PLoS ONE 8(10):e76020. doi: 10.1371/journal.pone.0076020 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Pica N, Bouvier NM (2014) Ambient temperature and respiratory virus infection. Pediatr Infect Dis J 33(3):311–313. doi: 10.1097/INF.0000000000000235 CrossRefPubMedGoogle Scholar
  28. 28.
    Ahmad N, Seidman M (2004) Tinnitus in the older adult: epidemiology, pathophysiology and treatment options. Drugs Aging 21(5):297–305CrossRefPubMedGoogle Scholar
  29. 29.
    Park JH, Park SJ, Kim YH, Park MH (2013) Sensorineural hearing loss: a complication of acute otitis media in adults. Eur Arch Otorhinolaryngol. doi: 10.1007/s00405-013-2675-x Google Scholar
  30. 30.
    Brummett RE (1993) Ototoxic liability of erythromycin and analogues. Otolaryngol Clin North Am 26(5):811–819PubMedGoogle Scholar
  31. 31.
    Adriaenssens N, Coenen S, Versporten A, Muller A, Minalu G, Faes C, Vankerckhoven V, Aerts M, Hens N, Molenberghs G, Goossens H, Group EP (2011) European Surveillance of Antimicrobial Consumption (ESAC): outpatient macrolide, lincosamide and streptogramin (MLS) use in Europe (1997–2009). J Antimicrob Chemother 66 Suppl 6:vi37–vi45. doi: 10.1093/jac/dkr456 PubMedGoogle Scholar
  32. 32.
    Suda KJ, Hicks LA, Roberts RM, Hunkler RJ, Taylor TH (2014) Trends and seasonal variation in outpatient antibiotic prescription rates in the United States, 2006–2010. Antimicrob Agents Chemother. doi: 10.1128/AAC.02239-13 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Hadlow NC, Brown S, Wardrop R, Henley D (2014) The effects of season, daylight saving and time of sunrise on serum cortisol in a large population. Chronobiol Int 31(2):243–251. doi: 10.3109/07420528.2013.844162 CrossRefPubMedGoogle Scholar
  34. 34.
    Kumagami H, Terakado M, Takahashi H (2013) Distribution of glucocorticoid receptors and 11β-hydroxysteroid dehydrogenase isoforms in the human inner ear. Otol Neurotol 34(1):151–157. doi: 10.1097/MAO.0b013e31826a55ad CrossRefPubMedGoogle Scholar
  35. 35.
    Tahera Y, Meltser I, Johansson P, Bian Z, Stierna P, Hansson AC, Canlon B (2006) NF-kappaB mediated glucocorticoid response in the inner ear after acoustic trauma. J Neurosci Res 83(6):1066–1076. doi: 10.1002/jnr.20795 CrossRefPubMedGoogle Scholar
  36. 36.
    Job A, Raynal M, Kossowski M (2007) Susceptibility to tinnitus revealed at 2 kHz range by bilateral lower DPOAEs in normal hearing subjects with noise exposure. Audiol Neurootol 12(3):137–144. doi: 10.1159/000099025 CrossRefPubMedGoogle Scholar
  37. 37.
    Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33. doi: 10.1016/j.pneurobio.2013.08.002 CrossRefPubMedGoogle Scholar
  38. 38.
    Simoens VL, Hébert S (2012) Cortisol suppression and hearing thresholds in tinnitus after low-dose dexamethasone challenge. BMC Ear Nose Throat Disord 12:4. doi: 10.1186/1472-6815-12-4 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Stanton SJ, Mullette-Gillman OA, Huettel SA (2011) Seasonal variation of salivary testosterone in men, normally cycling women, and women using hormonal contraceptives. Physiol Behav 104(5):804–808. doi: 10.1016/j.physbeh.2011.07.009 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Snihur AW, Hampson E (2012) Click-evoked otoacoustic emissions: response amplitude is associated with circulating testosterone levels in men. Behav Neurosci 126(2):325–331. doi: 10.1037/a0027193 CrossRefPubMedGoogle Scholar
  41. 41.
    Vanneste S, Plazier M, der Loo E, de Heyning PV, Congedo M, De Ridder D (2010) The neural correlates of tinnitus-related distress. Neuroimage 52(2):470–480. doi: 10.1016/j.neuroimage.2010.04.029 CrossRefPubMedGoogle Scholar
  42. 42.
    Golm D, Schmidt-Samoa C, Dechent P, Kröner-Herwig B (2013) Neural correlates of tinnitus related distress: an fMRI-study. Hear Res 295:87–99. doi: 10.1016/j.heares.2012.03.003 CrossRefPubMedGoogle Scholar
  43. 43.
    Spindelegger C, Stein P, Wadsak W, Fink M, Mitterhauser M, Moser U, Savli M, Mien LK, Akimova E, Hahn A, Willeit M, Kletter K, Kasper S, Lanzenberger R (2012) Light-dependent alteration of serotonin-1A receptor binding in cortical and subcortical limbic regions in the human brain. World J Biol Psychiatry 13(6):413–422. doi: 10.3109/15622975.2011.630405 CrossRefPubMedGoogle Scholar
  44. 44.
    Mazurek B, Stöver T, Haupt H, Klapp BF, Adli M, Gross J, Szczepek AJ (2010) The significance of stress: its role in the auditory system and the pathogenesis of tinnitus. HNO 58(2):162–172. doi: 10.1007/s00106-009-2001-5 CrossRefPubMedGoogle Scholar
  45. 45.
    Schaefer SM, Jackson DC, Davidson RJ, Aguirre GK, Kimberg DY, Thompson-Schill SL (2002) Modulation of amygdalar activity by the conscious regulation of negative emotion. J Cogn Neurosci 14(6):913–921. doi: 10.1162/089892902760191135 CrossRefPubMedGoogle Scholar
  46. 46.
    Urry HL, van Reekum CM, Johnstone T, Kalin NH, Thurow ME, Schaefer HS, Jackson CA, Frye CJ, Greischar LL, Alexander AL, Davidson RJ (2006) Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J Neurosci 26(16):4415–4425. doi: 10.1523/JNEUROSCI.3215-05.2006 CrossRefPubMedGoogle Scholar
  47. 47.
    comScore Releases January 2013 U.S. Search Engine Rankings (2013) Accessed 26 April 2013Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PsychiatryWisconsin Psychiatric Institute and Clinics, University of Wisconsin School of Medicine and Public HealthMadisonUSA
  2. 2.Department of PediatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations