European Archives of Oto-Rhino-Laryngology

, Volume 272, Issue 10, pp 2703–2711 | Cite as

Decreased calcium-activated potassium channels by hypoxia causes abnormal firing in the spontaneous firing medial vestibular nuclei neurons

  • Hong Xie
  • Yu-qin Zhang
  • Xin-liang Pan
  • Shu-hui WuEmail author
  • Xiang Chen
  • Jie Wang
  • Hua Liu
  • Xiao-zhong Qian
  • Zhi-guo Liu
  • Lie-Ju Liu


Vertebrobasilar insufficiency (VBI) presents complex varied clinical symptoms, including vertigo and hearing loss. Little is known, however, about how Ca2+-activated K+ channel attributes to the medial vestibular nucleus (MVN) neural activity in VBI. To address this issue, we performed whole-cell patch clamp and quantitative polymerase chain reaction (qPCR) to examine the effects of hypoxia on neural activity and the changes of the large conductance Ca2+ activated K+ channels (BKCa channels) in the MVN neurons in brain slices of male C57BL/6 mice. Brief hypoxic stimuli of the brain slices containing MVN were administrated by switching the normoxic artificial cerebrospinal fluid (ACSF) equilibrated with 21 % O2/5 % CO2 to hypoxic ACSF equilibrated with 5 % O2/5 % CO2 (balance N2). 3-min hypoxia caused a depolarization in the resting membrane potential (RM) in 8/11 non-spontaneous firing MVN neurons. 60/72 spontaneous firing MVN neurons showed a dramatic increase in firing frequency and a depolarization in the RM following brief hypoxia. The amplitude of the afterhyperpolarization (AHPA) was significantly decreased in both type A and type B spontaneous firing MVN neurons. Hypoxia-induced firing response was alleviated by pretreatment with NS1619, a selective BKCa activator. Furthermore, brief hypoxia caused a decrease in the amplitude of iberiotoxin-sensitive outward currents and mRNA level of BKCa in MVN neurons. These results suggest that BKCa channels protect against abnormal MVN neuronal activity induced by hypoxia, and might be a key target for treatment of vertigo and hearing loss in VBI.


Hypoxia Calcium-activated potassium channels Whole-cell recording Medial vestibular nucleus Slice 



Large conductance calcium-activated potassium channels


Vertebrobasilar insufficiency


Medial vestibular nucleus


Artificial cerebrospinal fluid




Conflict of interest

The authors declare that they have no competing financial interests.


  1. 1.
    Erecinska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128:263–276CrossRefPubMedGoogle Scholar
  2. 2.
    Schneider JI, Olshaker JS (2012) Vertigo, vertebrobasilar disease, and posterior circulation ischemic stroke. Emerg Med Clin N Am 30:681–693CrossRefGoogle Scholar
  3. 3.
    Yamasoba T, Kikuchi S, Higo R (2001) Deafness associated with vertebrobasilar insufficiency. J Neurol Sci 187:69–75CrossRefPubMedGoogle Scholar
  4. 4.
    Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256PubMedGoogle Scholar
  5. 5.
    Cazin L, Precht W, Lannou J (1980) Firing characteristics of neurons mediating optokinetic responses to rat’s vestibular neurons. Pflugers Arch 386:221–230CrossRefPubMedGoogle Scholar
  6. 6.
    Kim JS, Lee H (2009) Inner ear dysfunction due to vertebrobasilar ischemic stroke. Semin Neurol 29:534–540CrossRefPubMedGoogle Scholar
  7. 7.
    Inoue S, Yamanaka T, Okamoto H, Hosoi H (2004) Effect of a glutamate blocker, ipenoxazone hydrochloride on the hypoxia-induced firing in the medial vestibular nucleus. Acta Otolaryngol Suppl. doi: 10.1080/03655230410017689:58-60 Google Scholar
  8. 8.
    Vassias I, Patko T, Vidal PP, de Waele C (2003) Modulation of the beta1-3 voltage-gated sodium channels in rat vestibular and facial nuclei after unilateral labyrinthectomy and facial nerve section: an in situ hybridization study. Brain Res Mol Brain Res 120:73–78CrossRefPubMedGoogle Scholar
  9. 9.
    Ris L, Capron B, Nonclercq D et al (2003) Labyrinthectomy changes T-type calcium channels in vestibular neurones of the guinea pig. Neuroreport 14:1585–1589CrossRefPubMedGoogle Scholar
  10. 10.
    de Waele C, Serafin M, Khateb A, Yabe T, Vidal PP, Muhlethaler M (1993) Medial vestibular nucleus in the guinea-pig: apamin-induced rhythmic burst firing—an in vitro and in vivo study. Exp Brain Res 95:213–222CrossRefPubMedGoogle Scholar
  11. 11.
    Saito Y, Takazawa T, Ozawa S (2008) Relationship between afterhyperpolarization profiles and the regularity of spontaneous firings in rat medial vestibular nucleus neurons. Eur J Neurosci 28:288–298CrossRefPubMedGoogle Scholar
  12. 12.
    van Welie I, du Lac S (2011) Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons. J Neurophysiol 105:1651–1659PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Nelson AB, Gittis AH, du Lac S (2005) Decreases in CaMKII activity trigger persistent potentiation of intrinsic excitability in spontaneously firing vestibular nucleus neurons. Neuron 46:623–631CrossRefPubMedGoogle Scholar
  14. 14.
    Ghatta S, Nimmagadda D, Xu X, O’Rourke ST (2006) Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 110:103–116CrossRefPubMedGoogle Scholar
  15. 15.
    Smith MR, Nelson AB, Du Lac S (2002) Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. J Neurophysiol 87:2031–2042PubMedGoogle Scholar
  16. 16.
    Womack MD, Hoang C, Khodakhah K (2009) Large conductance calcium-activated potassium channels affect both spontaneous firing and intracellular calcium concentration in cerebellar Purkinje neurons. Neuroscience 162:989–1000PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Faber ES, Sah P (2002) Physiological role of calcium-activated potassium currents in the rat lateral amygdala. J Neurosci 22:1618–1628PubMedGoogle Scholar
  18. 18.
    Hendrich J, Alvarez P, Chen X, Levine JD (2012) GDNF induces mechanical hyperalgesia in muscle by reducing I(BK) in isolectin B4-positive nociceptors. Neuroscience 219:204–213PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Rodgers-Garlick CI, Hogg DW, Buck LT (2013) Oxygen-sensitive reduction in Ca(2)(+)-activated K(+) channel open probability in turtle cerebrocortex. Neuroscience 237:243–254CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang R, Sun H, Liao C et al (2012) Chronic hypoxia in cultured human podocytes inhibits BKCa channels by upregulating its beta4-subunit. Biochem Biophys Res Commun 420:505–510CrossRefPubMedGoogle Scholar
  21. 21.
    Gavello D, Rojo-Ruiz J, Marcantoni A, Franchino C, Carbone E, Carabelli V (2012) Leptin counteracts the hypoxia-induced inhibition of spontaneously firing hippocampal neurons: a microelectrode array study. PLoS One 7:e41530PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Marino M, Beny JL, Peyter AC, Diaceri G, Tolsa JF (2011) Perinatal hypoxia enhances cyclic adenosine monophosphate-mediated BKCa channel activation in adult murine pulmonary artery. J Cardiovasc Pharmacol 57:154–165CrossRefPubMedGoogle Scholar
  23. 23.
    Veltkamp R, Domoki F, Bari F, Busija DW (1998) Potassium channel activators protect the N-methyl-D-aspartate-induced cerebral vascular dilation after combined hypoxia and ischemia in piglets. Stroke 29:837–842 (discussion 842–833)CrossRefPubMedGoogle Scholar
  24. 24.
    Hughes JM, Riddle MA, Paffett ML, Gonzalez Bosc LV, Walker BR (2010) Novel role of endothelial BKCa channels in altered vasoreactivity following hypoxia. Am J Physiol Heart Circ Physiol 299:H1439–H1450PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Ye ZY, Li DP, Byun HS, Li L, Pan HL (2012) NKCC1 upregulation disrupts chloride homeostasis in the hypothalamus and increases neuronal activity-sympathetic drive in hypertension. J Neurosci 32:8560–8568PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Yoon KW, Covey DF, Rothman SM (1993) Multiple mechanisms of picrotoxin block of GABA-induced currents in rat hippocampal neurons. J Physiol 464:423–439PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMedGoogle Scholar
  28. 28.
    Fuchs AF, Kimm J (1975) Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. J Neurophysiol 38:1140–1161PubMedGoogle Scholar
  29. 29.
    Serafin M, de Waele C, Khateb A, Vidal PP, Muhlethaler M (1991) Medial vestibular nucleus in the guinea-pig. I. Intrinsic membrane properties in brainstem slices. Exp Brain Res 84:417–425CrossRefPubMedGoogle Scholar
  30. 30.
    Serafin M, de Waele C, Khateb A, Vidal PP, Muhlethaler M (1991) Medial vestibular nucleus in the guinea-pig. II. Ionic basis of the intrinsic membrane properties in brainstem slices. Exp Brain Res 84:426–433CrossRefPubMedGoogle Scholar
  31. 31.
    Neely A, Lingle CJ (1992) Two components of calcium-activated potassium current in rat adrenal chromaffin cells. J Physiol 453:97–131PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Cao XH, Chen SR, Li L, Pan HL (2012) Nerve injury increases brain-derived neurotrophic factor levels to suppress BK channel activity in primary sensory neurons. J Neurochem 121:944–953PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Halliwell J (1990) K+ channels in the central nervous system. In: Cook NS (ed) Potassium channels, structure, classification, function and therapeutic potential. Wiley, New York, pp 348–381Google Scholar
  34. 34.
    Hundahl CA, Luuk H, Ilmjarv S et al (2011) Neuroglobin-deficiency exacerbates Hif1A and c-FOS response, but does not affect neuronal survival during severe hypoxia in vivo. PLoS One 6:e28160PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Horn EM, Kramer JM, Waldrop TG (2000) Development of hypoxia-induced Fos expression in rat caudal hypothalamic neurons. Neuroscience 99:711–720CrossRefPubMedGoogle Scholar
  36. 36.
    Teppema LJ, Veening JG, Kranenburg A, Dahan A, Berkenbosch A, Olievier C (1997) Expression of c-fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia. J Comp Neurol 388:169–190CrossRefPubMedGoogle Scholar
  37. 37.
    Wahl AS, Buchthal B, Rode F et al (2009) Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors. Neuroscience 158:344–352CrossRefPubMedGoogle Scholar
  38. 38.
    Huang L, Li Q, Li H et al (2009) Inhibition of intracellular Ca2+ release by a Rho-kinase inhibitor for the treatment of ischemic damage in primary cultured rat hippocampal neurons. Eur J Pharmacol 602:238–244CrossRefPubMedGoogle Scholar
  39. 39.
    Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397CrossRefPubMedGoogle Scholar
  40. 40.
    Gribkoff VK, Starrett JE Jr, Dworetzky SI et al (2001) Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 7:471–477CrossRefPubMedGoogle Scholar
  41. 41.
    Lukyanetz EA, Shkryl VM, Kravchuk OV, Kostyuk PG (2003) Action of hypoxia on different types of calcium channels in hippocampal neurons. Biochim Biophys Acta 1618:33–38CrossRefPubMedGoogle Scholar
  42. 42.
    Mironov SL, Richter DW (2000) Hypoxic modulation of L-type Ca(2+) channels in inspiratory brainstem neurones: intracellular signalling pathways and metabotropic glutamate receptors. Brain Res 869:166–177CrossRefPubMedGoogle Scholar
  43. 43.
    Liao Y, Kristiansen AM, Oksvold CP et al (2010) Neuronal Ca2+-activated K+ channels limit brain infarction and promote survival. PLoS one 5:e15601PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Runden-Pran E, Haug FM, Storm JF, Ottersen OP (2002) BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures. Neuroscience 112:277–288CrossRefPubMedGoogle Scholar
  45. 45.
    Muller M, Somjen GG (2000) Na(+) and K(+) concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices. J Neurophysiol 83:735–745PubMedGoogle Scholar
  46. 46.
    Schiff SJ, Somjen GG (1985) Hyperexcitability following moderate hypoxia in hippocampal tissue slices. Brain Res 337:337–340CrossRefPubMedGoogle Scholar
  47. 47.
    Huang H, Gao TM, Gong L, Zhuang Z, Li X (2001) Potassium channel blocker TEA prevents CA1 hippocampal injury following transient forebrain ischemia in adult rats. Neurosci Lett 305:83–86CrossRefPubMedGoogle Scholar
  48. 48.
    Wei L, Yu SP, Gottron F, Snider BJ, Zipfel GJ, Choi DW (2003) Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke 34:1281–1286CrossRefPubMedGoogle Scholar
  49. 49.
    Yao H, Gao Q, Xia Q (2010) The role of mitochondrial K+channels in the cardioprotection of puerarin against hypoxia/reoxygenation injury in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 26:459–462PubMedGoogle Scholar
  50. 50.
    Dal-Cim T, Martins WC, Santos AR, Tasca CI (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca(2+)-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220CrossRefPubMedGoogle Scholar
  51. 51.
    Levin SG, Godukhin OV (2009) Role of Ca(2+)-activated potassium channels with high-conductivity in hypoxic preconditioning and posthypoxic hyperexcitability in CA1 hippocampal neurons in vitro. Zh Vyssh Nerv Deiat Im I P Pavlova 59:622–629PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hong Xie
    • 1
  • Yu-qin Zhang
    • 2
  • Xin-liang Pan
    • 3
  • Shu-hui Wu
    • 4
    Email author
  • Xiang Chen
    • 4
  • Jie Wang
    • 4
  • Hua Liu
    • 4
  • Xiao-zhong Qian
    • 4
  • Zhi-guo Liu
    • 5
  • Lie-Ju Liu
    • 5
  1. 1.Jingzhou Central HospitalJingzhouPeople’s Republic of China
  2. 2.Department of NeurologyAnhui No.2 Provincial People’s HospitalHefeiPeople’s Republic of China
  3. 3.Department of OtolaryngologyHead and Neck Surgery, Qilu Hospital, Shandong UniversityJinanPeople’s Republic of China
  4. 4.Department of Otolaryngology, Shuguang Hospital Baoshan BranchShanghai University of Traditional Chinese MedicineShanghaiPeople’s Republic of China
  5. 5.Institution of NutritionWuhan Polytechnic UniversityWuhanPeople’s Republic of China

Personalised recommendations