Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 272, Issue 7, pp 1651–1658 | Cite as

Topographic bone thickness maps for Bonebridge implantations

  • Wilhelm Wimmer
  • Nicolas GerberEmail author
  • Jérémie Guignard
  • Patrick Dubach
  • Martin Kompis
  • Stefan Weber
  • Marco Caversaccio
Otology

Abstract

Bonebridge™ (BB) implantation relies on optimal anchoring of the bone-conduction implant in the temporal bone. Preoperative position planning has to account for the available bone thickness minimizing unwanted interference with underlying anatomical structures. This study describes the first clinical experience with a planning method based on topographic bone thickness maps (TBTM) for presigmoid BB implantations. The temporal bone was segmented enabling three-dimensional surface generation. Distances between the external and internal surface were color encoded and mapped to a TBTM. Suitable implant positions were planned with reference to the TBTM. Surgery was performed according to the standard procedure (n = 7). Computation of the TBTM and consecutive implant position planning took 70 min on average for a trained technician. Surgical time for implantations under passive TBTM image guidance was 60 min, on average. The sigmoid sinus (n = 5) and dura mater (n = 1) were exposed, as predicted with the TBTM. Feasibility of the TBTM method was shown for standard presigmoid BB implantations. The projection of three-dimensional bone thickness information into a single topographic map provides the surgeon with an intuitive display of the anatomical situation prior to implantation. Nevertheless, TBTM generation time has to be significantly reduced to simplify integration in clinical routine.

Keywords

Bone-conduction implants Preoperative planning Temporal bone Passive image guidance 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pfiffner F, Caversaccio MD, Kompis M (2011) Audiological results with Baha® in conductive and mixed hearing loss. In: Kompis M, Caversaccio M (eds) Implantable bone conduction hearing aids. Adv Otorhinolaryngol, vol 71. Karger, Basel, pp 73–83CrossRefGoogle Scholar
  2. 2.
    Wazen JJ, Spitzer JB, Ghossaini SN, Fayad JN, Niparko JK, Cox K, Brackmann DE, Soli SD (2003) Transcranial contralateral cochlear stimulation in unilateral deafness. Otolaryngol Head Neck 129:248–254CrossRefGoogle Scholar
  3. 3.
    Yuen HW, Bodmer D, Smilsky K, Nedzelski JM, Chen JM (2009) Management of single-sided deafness with the bone-anchored hearing aid. Otolaryngol Head Neck 141:16–23CrossRefGoogle Scholar
  4. 4.
    Stenfelt S (2011) Acoustic and physiologic aspects of bone conduction hearing. In: Kompis M, Caversaccio M (eds) Implantable bone conduction hearing aids. Adv Otorhinolaryngol, vol 71. Karger, Basel, pp 10–21CrossRefGoogle Scholar
  5. 5.
    Tjellström A, Lindström J, Hallén O, Albrektsson T, Brånemark PI (1981) Osseointegrated titanium implants in the temporal bone. A clinical study on bone-anchored hearing aids. Am J Otolaryngol 2:308–310Google Scholar
  6. 6.
    Wazen JJ, Wycherly B, Daugherty J (2011) Complications of bone-anchored hearing devices. In: Kompis M, Caversaccio M (eds) Implantable bone conduction hearing aids. Adv Otorhinolaryngol, vol 71. Karger, Basel, pp 63–72CrossRefGoogle Scholar
  7. 7.
    Kraai T, Brown C, Neeff M, Fisher K (2011) Complications of bone-anchored hearing aids in pediatric patients. Int J Pediatr Otorhinolaryngol 75:749–753CrossRefPubMedGoogle Scholar
  8. 8.
    Denoyelle F, Leboulanger N, Coudert C, Mazzaschi O, Loundon N, Vicaut E, Tessier N, Garabedian EN (2013) New closed skin bone-anchored implant: preliminary results in 6 children with ear atresia. Otol Neurotol 34:275–281CrossRefPubMedGoogle Scholar
  9. 9.
    Håkansson B, Reinfeldt S, Eeg-Olofsson M, Östli P, Taghavi H, Adler J, Gabrielsson J, Stenfelt S, Granström G (2010) A novel bone conduction implant (BCI): engineering aspects and pre-clinical studies. Int J Audiol 49:203–215CrossRefPubMedGoogle Scholar
  10. 10.
    Sprinzl G, Lenarz T, Ernst A, Hagen R, Wolf-Magele A, Mojallal H, Todt I, Mlynski R, Wolframm M (2013) First European multicenter results with a new transcutaneous bone conduction hearing implant system: short-term safety and efficacy. Otol Neurotol 34:1076–1083CrossRefPubMedGoogle Scholar
  11. 11.
    Barbara M, Perotti M, Gioia B, Volpini L, Monini S (2013) Transcutaneous bone-conduction hearing device: audiological and surgical aspects in a first series of patients with mixed hearing loss. Acto Otolaryngol 133:1058–1064CrossRefPubMedGoogle Scholar
  12. 12.
    Huber AM, Sim JH, Xie YZ, Chatzimichalis M, Ullrich O, Röösli C (2013) The Bonebridge: preclinical evaluation of a new transcutaneously-activated bone anchored hearing device. Hear Res 301:93–99CrossRefPubMedGoogle Scholar
  13. 13.
    Canis M, Ihler F, Blum J, Matthias C (2013) CT-assisted navigation for retrosigmoidal implantation of the Bonebridge. HNO 61:1038–1044CrossRefPubMedGoogle Scholar
  14. 14.
    Lassaletta L, Sanchez-Cuadrado I, Muñoz E, Gavilan J (2014) Retrosigmoid implantation of an active bone conduction stimulator in a patient with chronic otitis media. Auris Nasus Larynx 41:84–87CrossRefPubMedGoogle Scholar
  15. 15.
    Guignard J, Arnold A, Weisstanner C, Caversaccio M, Stieger C (2013) A bone thickness map as a guide for implantation surgery in the temporal bone. Materials 6:5291–5301CrossRefGoogle Scholar
  16. 16.
    Sprinzl G, Mockenhaupt J, Koebke J, Thumfart WF (1992) The temporal bone. HNO 40:206–214PubMedGoogle Scholar
  17. 17.
    Salah Z, Kastner M, Dammann F, Schwaderer E, Maassen MM, Bartz D, Strasser W (2006) Preoperative planning of a complete mastoidectomy: semiautomatic segmentation and evaluation. Int J Cars 1:213–222CrossRefGoogle Scholar
  18. 18.
    Gerber N, Bell B, Gavaghan K, Weisstanner C, Caversaccio M, Weber S (2014) Surgical planning tool for robotically assisted hearing aid implantation. Int J Cars 9:11–20CrossRefGoogle Scholar
  19. 19.
    Reda FA, Noble JH, Rivas A, McRackan TR, Labadie RF, Dawant BM (2011) Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans. Med Phys 38:5590–5600CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wilhelm Wimmer
    • 1
  • Nicolas Gerber
    • 1
    Email author
  • Jérémie Guignard
    • 1
  • Patrick Dubach
    • 2
    • 3
  • Martin Kompis
    • 2
  • Stefan Weber
    • 1
  • Marco Caversaccio
    • 2
  1. 1.ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
  2. 2.Department of Otorhinolaryngology Head and Neck SurgeryInselspital, University of BernBernSwitzerland
  3. 3.BMBF, Innovation Center for Computer Aided Surgery (ICCAS)University of LeipzigLeipzigGermany

Personalised recommendations