Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 271, Issue 8, pp 2213–2217 | Cite as

Effects of topical nasal steroids and diclofenac on the nasal mucosa during hyperbaric oxygen therapy: a double-blind experimental study

  • Erkan VuralkanEmail author
  • Hatice Bengu Cobanoglu
  • Abdullah Arslan
  • Selcuk Arslan
  • Sevdegul Mungan
  • Selcuk Tatar
  • Akın Savas Toklu
Rhinology
  • 142 Downloads

Abstract

We aimed to evaluate nasal mucosal changes and efficiency of nasal steroids and diclofenac on nasal mucosa during hyperbaric oxygen (HBO) treatment. Forty adult Albino–Wistar rats were randomized into four groups. Group 1 (control group) (n = 10) not exposed to hyperbaric or enhanced oxygen concentrations; group 2 (HBO group) (n = 10) underwent only HBO treatment; group 3 (n = 10) received HBO and intranasal mometasone furoate (10 μl/day); group 4 (n = 10) treated with HBO and diclofenac sodium (10 mg/kg/day ip). Specimens of nasal mucosa were collected after sacrificing and dissection of animals. The specimens were processed for light microscopic evaluation, and then evaluated histopathologically for fibroblastic proliferation and inflammation. Regarding the scores of inflammation, the level of inflammation in the control group was significantly less severe than the other groups (p < 0.05). Evaluation of the fibrosis scores showed that the scores of both groups 2 and 4 were significantly increased (p < 0.05). There were no statistically significant differences between groups 2, 3, and 4 as for fibrosis and inflammation (p > 0.05). Chronic HBO treatment induced mild inflammation of the nasal mucosa. These effects cannot be prevented adequately by administration of nasal steroids and diclofenac.

Keywords

Hyperbaric Oxygen Nasal mucosa Steroids Diclofenac 

Notes

Conflict of interest

The authors have not disclosed any conflict of interest.

References

  1. 1.
    Narozny W, Sicko Z, Stankiewicz CZ et al (2002) The effects of hyperbaric oxygen on nasal mucociliary transport. Clin Otolaryngol Allied Sci 27:140–146PubMedCrossRefGoogle Scholar
  2. 2.
    Sahni T, Hukku S, Jain M et al (2004) Recent advances in hyperbaric Oxygen therapy. Med Update 14:632–639Google Scholar
  3. 3.
    Neumeister M, Cram A, Talavera F, et al. hyperbaric oxygen therapy. 2004. http://www.emedicine.com/plastic/topic526.htm. Accessed 12 November 2008
  4. 4.
    Moon RE, Sheffield PJ (1997) Guidelines for treatment of decompression illness. Aviat Space Environ Med 68:234–243PubMedGoogle Scholar
  5. 5.
    Dundar K, Gumus T, Ay H et al (2007) Effectiveness of hyperbaric oxygen on sudden sensorineural hearing loss: prospective clinical research. J Otolaryngol 36:32–37PubMedCrossRefGoogle Scholar
  6. 6.
    Desloovere C, Knecht R, Germonpré P (2006) Hyperbaric oxygen therapy after failure of conventional therapy for sudden deafness. B-ENT 2:69–73PubMedGoogle Scholar
  7. 7.
    McDermott JJ, Dutka AJ, Koller WA et al (1992) Comparison of two recompression profiles in treating experimental cerebral air embolism. Undersea Biomed Res 19:171–185PubMedGoogle Scholar
  8. 8.
    Oter S, Topal T, Sadir S et al (2007) Oxidative stress levels in rats following exposure to oxygen at 3 atm for 0–120 min. Aviat Space Environ Med 78:1108–1113PubMedCrossRefGoogle Scholar
  9. 9.
    Vera-Cruz P, Ferreira M, Zagalo C et al (2010) Structure of the rat nasal mucosa after acute and chronic hyperbaric oxygen therapy. Undersea Hyperb Med 37:125–132PubMedGoogle Scholar
  10. 10.
    Vera-Cruz P, Ferreira M, Zagalo C et al (2008) Chronic hyperbaric oxygen therapy and the human nasal mucosa: increased thickness of epithelium basement membrane and moderate neutrophilic infiltration. Rhinology 46:297–301PubMedGoogle Scholar
  11. 11.
    Tsumuro T, Ogawa M, Minami K et al (2005) Effects of mometasone furoate on a rat allergic rhinitis model. Eur J Pharmacol 524:155–158PubMedCrossRefGoogle Scholar
  12. 12.
    Yugoshi LI, Sala MA, Brentegani LG et al (2002) Histometric study of socket healing after tooth extraction in rats treated with diclofenac. Braz Dent J 13:92–96PubMedCrossRefGoogle Scholar
  13. 13.
    Nikula KJ, Sabourin PJ, Frietag BC et al (1991) Biochemical and morphologic responses of rat nasal epithelia to hyperoxia. Fundam Appl Toxicol 17:675–683PubMedCrossRefGoogle Scholar
  14. 14.
    Sonmez G, Uzun G, Mutluoglu M et al (2011) Paranasal sinus mucosal hypertrophy in experienced divers. Aviat Space Environ Med 82:992–994PubMedCrossRefGoogle Scholar
  15. 15.
    Harkema JR, Morgan KT, Gross EA et al (1994) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part VII: effects on the nasal mucociliary apparatus. Res Rep Health Eff Inst 65:3–26Google Scholar
  16. 16.
    Ho CY, Tan CT, Tsai HH et al (2008) Ozone-induced nasal hyperresponsiveness to tachykinins in guinea pigs. Am J Rhinol 22:463–467PubMedCrossRefGoogle Scholar
  17. 17.
    Ramalho R, Soares R, Couto N et al (2011) Tachykinin receptors antagonism for asthma: a systematic review. BMC Pulm Med. 11:41PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Scholer DW, Boettcher I, Schweizer A et al (1986) Pharmacology of diclophenac sodium. Am J Med 80:34–38PubMedCrossRefGoogle Scholar
  19. 19.
    Gan TJ (2010) Diclofenac: an update on its mechanism of action and safety profile. Curr Med Res Opin 26:1715–1731PubMedCrossRefGoogle Scholar
  20. 20.
    Potter PC, Pawankar R (2012) Indications, efficacy, and safety of intranasal corticosteriods in rhinosinusitis. World Allergy Organ J. 5:14–17CrossRefGoogle Scholar
  21. 21.
    Zhang X, Moilanen E, Adcock IM et al (2002) Divergent effect of mometasone on human eosinophil and neutrophil apoptosis. Life Sci 71:1523–1534PubMedCrossRefGoogle Scholar
  22. 22.
    Deitmer T, Muller S (1992) Effect of low frequency air oscillations on nasal mucociliary transport. Acta Otolaryngol 112:102–106PubMedCrossRefGoogle Scholar
  23. 23.
    Karaman M, Tek A (2009) Deleterious effect of smoking and nasal septal deviation on mucociliary clearance and improvement after septoplasty. Am J Rhinol Allergy 23:2–7PubMedCrossRefGoogle Scholar
  24. 24.
    Bossi R, Piatti G, Roma E et al (2004) Effects of long-term nasal continuous positive airway pressure therapy on morphology, function, and mucociliary clearance of nasal epithelium in patients with obstructive sleep apnea syndrome. Laryngoscope 114:1431–1434PubMedCrossRefGoogle Scholar
  25. 25.
    Almendros I, Acerbi I, Vilaseca I et al (2008) Continuous positive airway pressure (CPAP) induces early nasal inflammation. Sleep 31:127–131PubMedCentralPubMedGoogle Scholar
  26. 26.
    Schrödter S, Biermann E, Halata Z (2004) Histologic evaluation of nasal epithelium of the middle turbinate in untreated OSAS patients and during nCPAP therapy. Rhinology 42:153–157PubMedGoogle Scholar
  27. 27.
    Saka C, Vuralkan E, Fırat IH et al (2012) The effects of CPAP treatment on nasal mucosa in patients with obstructive sleep apnea. Eur Arch Otorhinolaryngol 269:2065–2067PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erkan Vuralkan
    • 1
    Email author
  • Hatice Bengu Cobanoglu
    • 1
  • Abdullah Arslan
    • 2
  • Selcuk Arslan
    • 3
  • Sevdegul Mungan
    • 4
  • Selcuk Tatar
    • 5
  • Akın Savas Toklu
    • 5
  1. 1.Department of OtorhinolaryngologyTrabzon Kanuni Research and Training HospitalTrabzonTurkey
  2. 2.Department of Underwater and Hyperbaric MedicineTrabzon Kanuni Research and Training HospitalTrabzonTurkey
  3. 3.Department of Otorhinolaryngology, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
  4. 4.Department of Pathology, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
  5. 5.Department of Underwater and Hyperbaric Medicine, Faculty of MedicineIstanbul UniversityIstanbulTurkey

Personalised recommendations