European Archives of Oto-Rhino-Laryngology

, Volume 271, Issue 10, pp 2627–2635 | Cite as

Vasospasm of labyrinthine artery in cerebellopontine angle surgery: evidence brought by distortion-product otoacoustic emissions

  • Thierry Mom
  • Audrey Montalban
  • Toufic Khalil
  • Jean Gabrillargues
  • Jean Chazal
  • Laurent Gilain
  • Paul Avan


In cerebellopontine angle (CPA) surgery, postoperative deafness can be due to alteration of cochlear blood flow that is supplied by the labyrinthine artery (LA). In particular, vasospasm is likely to occur and, if so, can be reversed. This work attempted to track down vascular events occurring during CPA surgery. Twenty consecutive patients with vestibular schwannoma were tested with useful preoperative hearing and presence of otoacoustic emissions (OAEs). Distortion-product otoacoustic emissions (DPOAEs), well-known to react within seconds to cochlear ischemia, were used intraoperatively to indirectly monitor cochlear blood flow. Continuous intraoperative monitoring of DPOAEs revealed three different time patterns associated with distinct auditory outcomes. Pattern P1-acute (n = 4) happened when the LA was severed: DPOAEs immediately and irreversibly foundered and led to postoperative deafness. Pattern P2-protracted (n = 7) revealed a progressive deterioration of DPOAEs from the beginning of tumor debulking, likely due to a steady decrease of cochlear blood flow, with postoperative deafness. Pattern P3-unstable (n = 5) corresponded to large DPOAE oscillations between their normal level and noise floor. It was due to acute LA vasospasm that could be reversed in three cases by topical nimodipin. Last, four patients had uneventful cochlear monitoring. In conclusion, cochlear ischemia can occur in vestibular schwannoma surgery, giving three different patterns among which vasospasm can be reversed if detected early.


Vestibular schwannoma Hearing preservation Distortion-product otoacoustic emissions Cochlear ischemia 


  1. 1.
    Sterkers JM, Sterkers O, Maudelonde C, Corlieu P (1984) Preservation of hearing by the retrosigmoid approach in acoustic neuroma surgery. Adv Otorhinolaryngol 34:187–192PubMedGoogle Scholar
  2. 2.
    Brackmann DE, Owens RM, Friedman RA, Hitselberger WE, De la Cruz A, House JW, Nelson RA, Luxford WM, Slattery WH III, Fayad JN (2000) Prognostic factors for hearing preservation in vestibular schwannoma surgery. Am J Otol 21:417–424PubMedCrossRefGoogle Scholar
  3. 3.
    Dornhoffer JL, Helms J, Hoehmann DH (1995) Hearing preservation in acoustic tumor surgery: results and prognostic factors. Laryngoscope 105:184–187PubMedCrossRefGoogle Scholar
  4. 4.
    Samii M, Matthies C (1997) Management of 1000 vestibular schwannomas (acoustic neuromas): hearing function in 1000 tumor resections. Neurosurgery 40:248–260PubMedCrossRefGoogle Scholar
  5. 5.
    Samii M, Gerganov V, Samii A (2006) Improved preservation of hearing and facial nerve function in vestibular schwannoma surgery via the retrosigmoid approach in a series of 200 patients. J Neurosurg 105:527–535PubMedCrossRefGoogle Scholar
  6. 6.
    Colletti V, Fiorino FG, Carner M, Cumer G, Giarbini N, Sachetto L (2000) Intraoperative monitoring for hearing preservation and restoration in acoustic neuroma surgery. Skull Base Surg 10:187–195PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Arts HA, Telian SA, El-Kashlan H, Thompson BG (2006) Hearing preservation and facial nerve outcomes in vestibular surgery: results using the middle cranial fossa approach. Otol Neurotol 27:234–241PubMedCrossRefGoogle Scholar
  8. 8.
    Meyer TA, Canty PA, Wilkinson EP, Hansen MR, Rubinstein JT, Gantz B (2006) Small acoustic neuromas: surgical outcomes versus observation or radiation. Otol Neurotol 27:380–392PubMedCrossRefGoogle Scholar
  9. 9.
    Jacob A, Robinson LL, Bortman JS, Yu L, Dodson EE, Welling B (2007) Nerve of origin, tumor size, hearing preservation, and facial nerve outcomes in 359 vestibular schwannoma resections at a tertiary care academic center. Laryngoscope 117:2087–2092PubMedCrossRefGoogle Scholar
  10. 10.
    Piccirillo E, Hiraumi M, Russo A, De Stefano A, Sanna M (2008) Intraoperative cochlear nerve monitoring in VS surgery—does it really affect hearing outcome? Audiol Neurotol 13:58–64CrossRefGoogle Scholar
  11. 11.
    Rowed DW, Nedzelski JM (1997) Hearing preservation in the removal of intracanalicular acoustic neuromas via the retrosigmoid approach. J Neurosurg 86:456–461PubMedCrossRefGoogle Scholar
  12. 12.
    Yamakami I, Yoshinori H, Saeki N, Wada M, Oka N (2009) Hearing preservation and intraoperative brainstem response and cochlear compound action potential monitoring in the removal of Small acoustic neuroma via the retrosigmoid approach. J Neurol Neurosurg Psychiatry 80:218–227PubMedCrossRefGoogle Scholar
  13. 13.
    Moller AR (1996) Monitoring auditory function during operations to remove acoustic tumors. Am J Otol 17:452–460PubMedGoogle Scholar
  14. 14.
    Strauss C, Bischoff B, Romstöck J, Rachinger J, Rampp S, Prell J (2008) Hearing preservation in medial vestibular schwannomas. J Neurosurg 109:70–76PubMedCrossRefGoogle Scholar
  15. 15.
    Bischoff B, Romstöck J, Fahlbusch R, Buchfelder M, Strauss C (2008) Intraoperative brainstem auditory evoked potential pattern and perioperative vasoactive treatment for hearing preservation in vestibular schwannoma surgery. J Neurol Neurosurg Psychiatry 79:170–175PubMedCrossRefGoogle Scholar
  16. 16.
    Mom T, Telischi FF, Martin GK, Stagner BB, Lonsbury-Martin BL (2000) Vasospasm of the internal auditory artery: significance in cerebellopontine angle surgery. Am J Otol 21:735–742PubMedGoogle Scholar
  17. 17.
    Attias J, Nageris B, Ralph J, Vajda J, Rappaport ZH (2008) Hearing preservation using combined monitoring of extra-tympanic electrocochleography and auditory brainstem responses during acoustic neuroma surgery. Int J Audiol 47:178–184PubMedCrossRefGoogle Scholar
  18. 18.
    Sameshima T, Fukushima T, McElveen JT Jr, Friedman AH (2010) Critical assessment of operative approaches for hearing preservation in small acoustic neuroma surgery: retrosigmoid vs middle fossa approach. Neurosurgery 67:640–644PubMedCrossRefGoogle Scholar
  19. 19.
    Yates PD, Jackler R, Satar B, Pitts LH, Oghalai JS (2003) Is it worthwhile to attempt hearing preservation in larger acoustic neuromas? Otol Neurotol 24:460–464PubMedCrossRefGoogle Scholar
  20. 20.
    Telischi FF, Widick MP, Lonsbury-Martin BL, McCoy MJ (1995) Monitoring cochlear function intraoperatively using distortion product otoacoustic emissions. Am J Otol 16:597–608PubMedGoogle Scholar
  21. 21.
    Morawski K, Namyslowski G, Lisowska G, Basowski P, Kwiek S, Telischi FF (2004) Intraoperative monitoring of cochlear function using distortion product otoacoustic emissions (DPOAEs) in patients with cerebellopontine angle tumors. Otol Neurotol 25:818–825PubMedCrossRefGoogle Scholar
  22. 22.
    Ren T, Brown NJ, Zhang M, Nuttall AL, Miller JM (1995) A reversible ischemia model in gerbil cochlea. Hear Res 92:30–37PubMedCrossRefGoogle Scholar
  23. 23.
    Mom T, Avan P, Romand R, Gilain L (1997) Monitoring of functional changes after transient ischemia in gerbil cochlea. Brain Res 751:20–30PubMedCrossRefGoogle Scholar
  24. 24.
    Mom T, Telischi FF, Martin GK, Lonsbury-Martin BL (1999) Measuring the cochlear blood flow and distortion-product otoacoustic emissions during reversible cochlear ischemia: a rabbit model. Hear Res 133:40–52PubMedCrossRefGoogle Scholar
  25. 25.
    Martin GK, Probst R, Scheinin SA, Coats AC, Lonsbury-Martin BL (1987) Acoustic distortion products in rabbits. II. Sites of origin revealed by suppression and pure-tone exposures. Hear Res 28:191–208PubMedCrossRefGoogle Scholar
  26. 26.
    Lonsbury-Martin BL, Harris FP, Stagner BB, Hawkins MD, Martin GK (1990) Distortion product emissions in humans. I. Basic properties in normally hearing subjects. Ann Otol Rhinol Laryngol Suppl 147:3–14PubMedGoogle Scholar
  27. 27.
    Mom T, Avan P, Bonfils P, Gilain L (1999) A model of cochlear function assessment during reversible ischemia in the Mongolian gerbil. Brain Res Brain Res Protoc 4:249–257PubMedCrossRefGoogle Scholar
  28. 28.
    Perlman HB, Kimura R, Fernandez C (1959) Experiments on temporary obstruction of the internal auditory artery. Laryngoscope 69:591–613PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thierry Mom
    • 1
    • 3
  • Audrey Montalban
    • 1
  • Toufic Khalil
    • 2
  • Jean Gabrillargues
    • 4
  • Jean Chazal
    • 2
  • Laurent Gilain
    • 1
    • 3
  • Paul Avan
    • 3
  1. 1.Department of Otolaryngology Head Neck SurgeryUniversity Hospital of Clermont-FerrandClermont-FerrandFrance
  2. 2.Department of Neurosurgery AUniversity Hospital of Clermont-FerrandClermont-FerrandFrance
  3. 3.Laboratory of Neurosensory BiophysicsINSERM UMR 1107, School of Medicine, Université Clermont1Clermont-FerrandFrance
  4. 4.Department of NeuroradiologyUniversity Hospital of Clermont-FerrandClermont-FerrandFrance

Personalised recommendations