Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 270, Issue 11, pp 2927–2937 | Cite as

Picosecond infrared laser (PIRL): an ideal phonomicrosurgical laser?

  • Markus HessEmail author
  • Michael Dominik Hildebrandt
  • Frank Müller
  • Sebastian Kruber
  • Peter Kroetz
  • Udo Schumacher
  • Rudolph Reimer
  • Michael Kammal
  • Klaus Püschel
  • Wolfgang Wöllmer
  • Dwayne MillerEmail author
Laryngology

Abstract

A comparison of tissue cutting effects in excised cadaver human vocal folds after incisions with three different instruments [scalpel, CO2 laser and the picosecond infrared laser—(PIRL)] was performed. In total, 15 larynges were taken from human cadavers shortly after death. After deep freezing and thawing for the experiment, the vocal folds suspended in the hemilarynx were incised. Histology and environmental scanning electron microscopy (ESEM) analyses were performed. Damage zones after cold instrument cuts ranged from 51 to 135 μm, as compared to 9–28 μm after cutting with the PIRL. It was shown that PIRL incision had smaller zones of tissue coagulation and tissue destruction, when compared with scalpel and CO2 laser cuts. The PIRL technology provides an (almost) atraumatic laser, which offers a quantum jump towards realistic ‘micro’-phonosurgery on a factual cellular dimension, almost entirely avoiding coagulation, carbonization, or other ways of major tissue destruction in the vicinity of the intervention area. Although not available for clinical use yet, the new technique appears promising for future clinical applications, so that technical and methodological characteristics as well as tissue experiments seem worthwhile to be communicated at this stage of development.

Keywords

Laser surgery Carbon dioxide laser CO2 laser Picosecond infrared laser PIRL Scalpel Vocal folds Phonomicrosurgery ESEM Microscopy 

Notes

Acknowledgments

This study is part of the SUREPIRL project funded by an advanced grant from the European Research Council (ERC-AdG-2011-291630). We thank S. Feldhaus, H. Maar, T. Gosau and C. Köpke for excellent technical assistance. We thank H. Hohenberg and M. Heine for helpful discussions and expert advice.

Conflict of interest

RJDM is the author of the patent covering the PIRL process and is one of the founders of Attodyne Inc. All other authors declare no conflicts of interest. There has been no financial relationship with any sponsoring organization.

References

  1. 1.
    Allen J (2010) Cause of Vocal Fold Scar. Curr Opin Otolaryngol Head Neck Surg 18:475–480PubMedCrossRefGoogle Scholar
  2. 2.
    Courey MS, Gardner GM, Stone RE, Ossoff RH (1995) Endoscopic vocal fold microflap: a three-year experience. Ann Otol Rhinol Laryngol 104:267–273PubMedGoogle Scholar
  3. 3.
    Sataloff RT, Spiegel JR, Heuer RJ et al (1995) Laryngeal mini-microflap: a new technique and reassessment of the microflap saga. J Voice 9:198–204PubMedCrossRefGoogle Scholar
  4. 4.
    Remacle M, Hassan F, Cohen D, Lawson G, Delos M (2005) New computer-guided scanner for improving CO2 laser-assisted microincision. Eur Arch Otorhinolaryngol 262:113–119PubMedCrossRefGoogle Scholar
  5. 5.
    Remacle M, Lawson G, Nollevaux MC, Delos M (2008) Current state of scanning micromanipulator applications with the carbon dioxide laser. Ann Otol Rhinol Laryngol 117(4):239–244PubMedGoogle Scholar
  6. 6.
    Campagnolo AM, Tsuji DH, Sennes LU, Imamura R (2008) Steroid injection in chronic inflammatory vocal fold disorders. literatur review. Rev Bras Otorhinolaryngol 74(6):926–932Google Scholar
  7. 7.
    Mortensen M (2010) Laryngeal steroid injection for vocal fold scar. Curr Opin Otolaryngol Head Neck Surg 18:487–491PubMedCrossRefGoogle Scholar
  8. 8.
    Franjic K, Miller RJD (2010) Vibrationally excited ultrafast thermodynamic phase transitions at the water/air interface. Phys Chem Chem Phys 12(20):5225–5239PubMedCrossRefGoogle Scholar
  9. 9.
    Amini-Nik S, Kraemer D, Cowan ML, Gunaratne K, Nadesan P et al (2010) Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery. PLoS One 5(9):e13053PubMedCrossRefGoogle Scholar
  10. 10.
    Franjic K, Cowan ML, Kraemer D, Miller RJD (2009) Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations. Opt Express 17(25):22937–22959PubMedCrossRefGoogle Scholar
  11. 11.
    Mulisch M, Welsch U (2010) Romeis Mikroskopische Technik, 18. Aufl, Spektrum Akademischer Verlag, Heidelberg, pp 213–223Google Scholar
  12. 12.
    Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmüller A, Gordts PLSM, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205PubMedCrossRefGoogle Scholar
  13. 13.
    Danilatos GD (1988) Foundations of environmental scanning-electron-microscopy. Adv Electron El Phys 71:109–250CrossRefGoogle Scholar
  14. 14.
    McKinlay KJ, Allison FJ, Scotchford CA, Grant DM, Oliver JM, King JR, Wood JV, Brown PD (2004) Comparison of environmental scanning electron microscopy with high vacuum scanning electron microscopy as applied to the assessment of cell morphology. J Biomed Mater Res A. 1;69(2):359-66Google Scholar
  15. 15.
    Alhede M, Qvortrup K, Liebrechts R, Høiby N, Givskov M, Bjarnsholt T (2012) Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunol Med Microbiol 65(2):335–342PubMedCrossRefGoogle Scholar
  16. 16.
    Hess MM, Mueller F, Kobler JB, Zeitels SM, Goodyer E (2006) Measurements of vocal fold elasticity using the linear skin rheometer. Folia Phoniatr Logop 58(3):207–216PubMedCrossRefGoogle Scholar
  17. 17.
    Herdman RC, Charlton A, Hinton AE, Freemont AJ, Path MRC (1993) An in vitro comparison of the Erbium:YAG laser and the carbon dioxide laser in laryngeal surgery. The journal of laryngology and otology. 107:908–911PubMedGoogle Scholar
  18. 18.
    Hockstein NG, Nolan JP, O’Malley BW, Woo YJ (2005) Robot-assisted pharyngeal and laryngeal microsurgery: results of robotic cadaver dissections. Laryngoscope 115:1003–1008PubMedCrossRefGoogle Scholar
  19. 19.
    Alessandrini M, De Padova A, Napolitano B, Camillo A, Bruno E (2008) The AESOP robot system for video-assisted rigid endoscopic laryngosurgery. Eur Arch Otorhinolaryngol 265:1121–1123PubMedCrossRefGoogle Scholar
  20. 20.
    Zaffe D, Vitale MC, Martignone A, Scarpelli F, Botticelli AR (2004) Morphological, histochemical, and immunocytochemical study of CO2 and Er:YAG laser effect on oral soft tissues. Photomed Laser Surg. 22(3):185–189PubMedCrossRefGoogle Scholar
  21. 21.
    Lüerssen K, Lubatschowski H, Ptok M (2007) Erbium:YAG laser surgery on vocal fold tissue. HNO 55(6):443–446PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Markus Hess
    • 1
    Email author
  • Michael Dominik Hildebrandt
    • 1
  • Frank Müller
    • 1
  • Sebastian Kruber
    • 2
  • Peter Kroetz
    • 2
  • Udo Schumacher
    • 3
  • Rudolph Reimer
    • 4
  • Michael Kammal
    • 5
  • Klaus Püschel
    • 5
  • Wolfgang Wöllmer
    • 6
  • Dwayne Miller
    • 2
    Email author
  1. 1.Department of Voice, Speech and Hearing DisordersUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of Physics, Max Planck Department for Structural Dynamics, Center for Free Electron Laser Science, DESYUniversity of HamburgHamburgGermany
  3. 3.Department of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  4. 4.Research Group of Electron Microscopy and Micro-TechnologyHeinrich-Pette-Institute, Leibnitz Institute of Experimental VirologyHamburgGermany
  5. 5.Department of Legal MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany
  6. 6.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations