European Archives of Oto-Rhino-Laryngology

, Volume 269, Issue 6, pp 1653–1663

Gene expression analysis of SCC tumor cells in muscle tissue

  • Walter Hundt
  • Esther L. Yuh
  • Mykhaylo Burbelko
  • Andreas Kiessling
  • Mark D. Bednarski
  • Silke Steinbach
Article
  • 126 Downloads

Abstract

The purpose of this study was to evaluate microarray technology of HNSCC cells in muscle tissue. 200 SCCVII tumor cells were injected intramuscularly into the right flank of ten C3H/Km mice each. One week later the animals were killed and the tissue taken out. Histology (H&E staining) and microarray of the tissue were performed. Histology showed a few tumor cells between the muscle fibers. Microarray technology showed different gene expression pattern of the muscle tissue with SCCVII cells in comparison with normal muscle tissue. Only those genes showing a fold change difference of 5 or higher were considered. Gene expression analysis revealed changes in the expression levels of SCCVII cells in muscle tissue in 220 genes. Significant gene expression differences between SCCVII cells in muscle tissue and pure muscle tissue could be seen.

Keywords

SCCVII tumor cells Muscle tissue Histology Gene expression 

References

  1. 1.
    Edwards BK, Howe HL, Ries LA et al (2002) Annual report to the nation on the status of cancer, 1973–1999, featuring implications of age and aging on US cancer burden. Cancer (Phila) 94:2766–2792CrossRefGoogle Scholar
  2. 2.
    Ries LAG, Eisner MP, Kosary CL et al (2003) SEER cancer statistics review, 1975–2000. National Cancer Institute, BethesdaGoogle Scholar
  3. 3.
    Swango PA (1996) Cancers of the oral cavity and pharynx in the United States: an epidemiologic overview. J Public Health Dent 56(6):309–318PubMedCrossRefGoogle Scholar
  4. 4.
    Diaz EM J, Holsinger FC, Zuniga ER, Roberts DB, Sorensen DM (2003) Squamous cell carcinoma of the buccal mucosa: one institution’s experience with 119 previously untreated patients. Head Neck 25(4):267–273PubMedCrossRefGoogle Scholar
  5. 5.
    Rhee D, Wenig BM, Smith RV (2002) The significance of immunohistochemically demonstrated nodal micrometastases in patients with squamous cell carcinoma of the head and neck. Laryngoscope 112(11):1970–1974PubMedCrossRefGoogle Scholar
  6. 6.
    Thomsen JB, Christensen RK, Sorensen JA, Krogdahl A (2007) Sentinel lymph nodes in cancer of the oral cavity: is central step-sectioning enough? J Oral Pathol Med 36(7):425–429PubMedCrossRefGoogle Scholar
  7. 7.
    Leethanakul C, Knezevic V, Patel V et al (2003) Gene discovery in oral squamous cell carcinoma through the head and neck cancer genome anatomy project: confirmation by microarray analysis. Oral Oncol 39(3):248–258PubMedCrossRefGoogle Scholar
  8. 8.
    El-Naggar AK, Kim HW, Clayman GL et al (2002) Differential expression profiling of head and neck squamous carcinoma: significance in their phenotypic and biological classification. Oncogene 21(53):8206–8219PubMedCrossRefGoogle Scholar
  9. 9.
    Alevizos I, Mahadevappa M, Zhang X et al (2001) Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene 20(43):6196–6204PubMedCrossRefGoogle Scholar
  10. 10.
    Warner GC, Reis PP, Juriscia I et al (2004) Molecular classification of oral cancer by cDNA microarrays identifies overexpressed genes correlated with nodal metastasis. Int J Cancer 110:857–868PubMedCrossRefGoogle Scholar
  11. 11.
    Ning S, Yu N, Brown DM, Kanekal S, Knox SJ (1999) Radiosensitization by intratumoral administration of cisplatin in a sustained-release drug delivery system. Radiother Oncol 50(2):215–223PubMedCrossRefGoogle Scholar
  12. 12.
    Marley JJ, Robinson PA, Hume WJ (1994) Expression of human cytokeratin 14 in normal, premalignant and malignant oral tissue following isolation by plaque differential hybridisation. Eur J Cancer 30B(5):305–311Google Scholar
  13. 13.
    Brennan JA, Mao L, Hruban RH, Boyle JO, Eby YJ, Koch WM, Goodman SN, Sidransky D (1995) Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med 332(7):429–435PubMedCrossRefGoogle Scholar
  14. 14.
    Ferris RL, Xi L, Raja S, Hunt JL, Wang J, Gooding WE, Kelly L, Ching J, Luketich JD, Godfrey TE (2005) Molecular staging of cervical lymph nodes in squamous cell carcinoma of the head and neck. Cancer Res 65(6):2147–2156PubMedCrossRefGoogle Scholar
  15. 15.
    Mitas M, Cole DJ, Hoover L, Fraig MM, Mikhitarian K, Block MI, Hoffman BJ, Hawes RH, Gillanders WE, Wallace MB (2003) Real-time reverse transcription-PCR detects KS1/4 mRNA in mediastinal lymph nodes from patients with non-small cell lung cancer. Clin Chem 49(2):312–315PubMedCrossRefGoogle Scholar
  16. 16.
    Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54PubMedCrossRefGoogle Scholar
  17. 17.
    Jones J, Out H, Spentzos D et al (2005) Gene signature of progression and metastasis in renal cell cancer. Clin Cancer Res 11(16):5730–5739PubMedCrossRefGoogle Scholar
  18. 18.
    Xi L, Lyons-Weiler J, Coello MC et al (2005) Prediction of lymph node metastasis by analysis of gene expression profiles in primary lung adenocarcinomas. Clin Cancer Res 11(11):4128–4235PubMedCrossRefGoogle Scholar
  19. 19.
    Roepman P, Wessels LFA, Kettelarij N et al (2005) An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet 37(2):182–186PubMedCrossRefGoogle Scholar
  20. 20.
    Chung CH, Parker JS, Karaca G et al (2004) Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 5:489–500PubMedCrossRefGoogle Scholar
  21. 21.
    Eckhardt BL, Parker BS, van Laar RK et al (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3(1):1–13PubMedGoogle Scholar
  22. 22.
    Yuvaraj S, Blanchard JJ, Daughtridge G, Kolb RJ, Shanmugarajan S, Bateman TA, Reddy SV (2010) Microarray profile of gene expression during osteoclast differentiation in modelled microgravity. J Cell Biochem. Epub ahead of printGoogle Scholar
  23. 23.
    Sheng J, Zhang WY (2010) Identification of biomarkers for cervical cancer in peripheral blood lymphocytes using oligonucleotide microarrays. Chin Med J 123(8):1000–1005PubMedGoogle Scholar
  24. 24.
    Kishore U, Reid KBM (2000) C1q: structure, function, and receptors. Immunopharmacology 49(1–2):159–170PubMedCrossRefGoogle Scholar
  25. 25.
    Kishore U, Ghai R, Greenhough TJ, Shrive AK, Bonifati DM, Gadjeva MG, Waters P, Kojouharova MS, Chakraborty T, Agrawal A (2004) Structural and functional anatomy of the globular domain of complement protein C1q. Immunol Lett 95(2):113–128PubMedCrossRefGoogle Scholar
  26. 26.
    Boye K, Mælandsmo GM (2010) S100A4 and metastasis. A small actor playing many roles. Am J Pathol 176(2):528–535PubMedCrossRefGoogle Scholar
  27. 27.
    Haynes BF, Hemler ME, Mann DL, Eisenbarth GS, Shelhamer J, Mostowski HS, Thomas CA, Strominger JL, Fauci AS (1981) Characterization of a monoclonal antibody (4F2) that binds to human monocyte and to a subset of activated lymphocytes. J Immunol 126(4):1409–1414PubMedGoogle Scholar
  28. 28.
    Smedsrod B, Pertoft H, Gustafson S, Laurent TC (1990) Scavenger functions of the liver endothelial cell. Biochem J 266(2):313–327PubMedGoogle Scholar
  29. 29.
    Stahl PD, Ezekowitz RA (1998) The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10(1):50–55PubMedCrossRefGoogle Scholar
  30. 30.
    Vidal-Vanaclocha F, Alvarez A, Asumendi A, Urcelay B, Tonino P, Dinarello CA (1996) Interleukin 1 (IL-1)-dependent melanoma hepatic metastasis in vivo; increased endothelial adherence by IL-1-induced mannose receptors and growth factor production in vitro. J Natl Cancer Inst 88(3–4):198–205PubMedGoogle Scholar
  31. 31.
    Matsumiya T, Imaizumi T, Stafforini DM (2009) The levels of retinoic acid regulated by heat shock protein 90-alpha. J Immunol 182(5):2717–2725PubMedCrossRefGoogle Scholar
  32. 32.
    Popko B, Pearl DK, Walker DM, Comas TC, Baerwald KD, Burger PC, Scheithauer BW, Yates AJ (2002) Molecular markers that identify human astrocytomas and oligodendrogliomas. J Neuropathol Exp Neurol 61(4):329–338PubMedGoogle Scholar
  33. 33.
    Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31(1):11–24PubMedCrossRefGoogle Scholar
  34. 34.
    Classon BJ, Boyd RL (1998) Thymic-Shared Antigen-1 (TSA-1). A lymphostromal cell membrane Ly-6 superfamily molecule with a putative role in cellular adhesion. Dev Immunol 6(1–2):149–156PubMedCrossRefGoogle Scholar
  35. 35.
    Jetten AM, Suter U (2000) The peripheral myelin protein 22 and epithelial membrane protein family. Prog Nucleic Acid Res Mol Biol 64:97–129PubMedCrossRefGoogle Scholar
  36. 36.
    Garron ML, Arsenieva D, Zhong J, Bloom AB, Lerner A, O’Neill GM, Arold ST (2009) Structural insights into the association between BCAR3 and Cas family members, an atypical complex implicated in anti-oestrogen resistance. J Mol Biol 386(1):190–203PubMedCrossRefGoogle Scholar
  37. 37.
    McCarroll JA, Gan PP, Liu M, Kavallaris M (2010) βIII-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer Res 70(12):4995–5003PubMedCrossRefGoogle Scholar
  38. 38.
    Thompson HM, McNiven MA (2001) Dynamin: switch or pinchase? Curr Biol 11(21):R850PubMedCrossRefGoogle Scholar
  39. 39.
    van Horssen R, Eggermont AM, ten Hagen TLM (2006) Endothelial monocyte-activating polypeptide-II and its functions in(patho)physiological processes. Cytokine Growth Factor Rev 17(5):339–348PubMedCrossRefGoogle Scholar
  40. 40.
    Laurent-Matha V, Maruani-Herrmann S, Prebois C, Beaujouin M, Glondu M, Noel A, Alvarez-Gonzalez ML, Blacher S, Coopman P, Baghdiguian S, Gilles C, Loncarek J et al (2005) Catalytically inactive human cathepsin D triggers fibroblast invasive growth. J Cell Biol 168(3):489–499PubMedCrossRefGoogle Scholar
  41. 41.
    Hartman RE, Laurer H, Longhi L, Bales KR, Paul SM, McIntosh TK, Holtzman DM (2002) Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer’s disease. J Neurosci 22(23):10083–10087PubMedGoogle Scholar
  42. 42.
    Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13PubMedCrossRefGoogle Scholar
  43. 43.
    Lee YS, Kim HK, Chung S, Kim KS, Dutta A (2005) Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 280(17):16635–16641PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Walter Hundt
    • 1
  • Esther L. Yuh
    • 2
  • Mykhaylo Burbelko
    • 1
  • Andreas Kiessling
    • 1
  • Mark D. Bednarski
    • 2
  • Silke Steinbach
    • 3
  1. 1.Department of RadiologyPhilipps University MarburgMarburgGermany
  2. 2.Department of Radiology, Lucas CenterStanford UniversityStanfordUSA
  3. 3.Department of Otolaryngology Head and Neck SurgeryPhilipps University MarburgMarburgGermany

Personalised recommendations