European Archives of Oto-Rhino-Laryngology

, Volume 267, Issue 3, pp 367–374 | Cite as

Evaluation of Eustachian tube function with perfect sequences: technical realization and first clinical results

  • Ercole F. N. Di Martino
  • Viorel Nath
  • Aulis Telle
  • Christiane Antweiler
  • Leif E. Walther
  • P. Vary


The aim of this study was the introduction of a specific class of signals, the so-called perfect sequences (PSEQ), in a novel approach for sonotubometry of the Eustachian tube (ET). Sonotubometry using PSEQ stimuli was performed on 20 healthy subjects in order to gauge its potential for clinical applications. In a series of 320 measurements ET opening was probed, which was induced by dry and water swallowing, Toynbee maneuver, and yawning. All sonotubograms were analyzed with respect to their shape, increase of sound intensity, and opening duration. In 298/320 measurements (>93%) the subjects reported subjective ET openings. The evaluation of the recorded sonotubograms showed good detection of ET opening for the inducing maneuvers of swallowing (dry and water swallowing) and the Toynbee maneuver, with 90, 86, and 80% valid sonotubograms, respectively. Yawning led to only 40% valid sonotubograms. In total, 237/320 (~74%) sonotubograms were classified as valid. The evaluation of the sound level increase during ET openings showed that it was significantly higher in measurements with dry and water swallowing, as well as Toynbee maneuvers (mean 17.1, 19.0 and 17.2 dB, respectively), than with yawning (mean 10.17 dB; P < 0.0001). Nasal decongestion was found to have little influence on the results (P > 0.05). Sonotubometry using PSEQ stimuli is a novel sonotubometry methodology that provides valuable information regarding the auditory tube patency. By further technical refinements of the method, a diagnostic tool with high sensitivity and specificity could be developed.


Sonotubometry Eustachian tube Perfect sequences 



Part of this work was supported by the Deutsche Forschungsgemeinschaft (DFG), grant MA 3917/1–1. The authors thank Dr. A. Haselhuhn Aachen University, Institute of Biometrics for the statistics and Mr. C. Miller, Schaumburg, IL, USA for the translation.


  1. 1.
    Honjo I, Kumazawa T, Honda K (1981) Simple impedance test for Eustachian tube function. Arch Otolaryngol 107(4):221–223PubMedGoogle Scholar
  2. 2.
    McBride TP, Decray C, Cunningham M et al (1988) Evaluation of noninvasive Eustachian tube function tests in normal adults. Laryngoscope 98:655–658CrossRefPubMedGoogle Scholar
  3. 3.
    Di Martino E, Thaden R, Krombach GA et al (2004) Eustachian tube function tests. Current knowledge. HNO 52:1029–1040CrossRefGoogle Scholar
  4. 4.
    Di Martino E, Antweiler C, Kellner A et al (2004) Einsatz neuer akustischer Signale zur Tubenfunktionsuntersuchung. HNO Inf 29:104Google Scholar
  5. 5.
    Di Martino E, Thaden R, Antweiler C et al (2007) Evaluation of Eustachian tube function by sonotubometry: results and reliability of 8 kHz signals in normal subjects. Eur Arch Otorhinolaryngol 264(3):231–236CrossRefPubMedGoogle Scholar
  6. 6.
    Virtanen H (1978) Sonotubometry. Acta Otolaryngol 86:93–103CrossRefPubMedGoogle Scholar
  7. 7.
    Andreasson L, Ivarson A, Luttrup S et al (1984) Eustachian tube function measured as pressure equilibration and sound transmission capacity. A comparison in healthy ears. J Otorhinolaryngol Relat Spec 46:74–83Google Scholar
  8. 8.
    Van der Avoort SJ, Heerbeek N, Zielhuis GA et al (2006) Validation of sonotubometry in healthy adults. J Laryngol Otol 120(10):853–856PubMedGoogle Scholar
  9. 9.
    Murti KG, Stern R, Cantekin E et al (1980) Sonometric evaluation of Eustachian tube function using broadband stimuli. Ann Otol 89:178–184Google Scholar
  10. 10.
    Palva T, Martilla T, Jauhiainen T (1987) Comparison of pure tone and noise stimuli in sonotubometry. Acta Otolaryngol 103:212–216PubMedGoogle Scholar
  11. 11.
    Lüke HD (1992) Korrelationssignale. Springer, BerlinGoogle Scholar
  12. 12.
    Lüke HD, Schotten HD (1995) Odd-perfect almost binary correlation sequences. IEEE Trans Aerosp Electron Syst 31(1):495–498CrossRefGoogle Scholar
  13. 13.
    Ipatov VP (1979) Ternary sequences with ideal periodic autocorrelation properties. Radio Eng Electron Phys 24:75–79Google Scholar
  14. 14.
    Antweiler C, Dörbecker M (1994) Perfect sequence excitation of the NLMS algorithm and its application to acoustic echo control. Ann Télécommun 49:386–397Google Scholar
  15. 15.
    Antweiler C, Antweiler M (1995) System identification with perfect sequences based on the NLMS algorithm. Int J Electron Commun (AEU) 49:129–134Google Scholar
  16. 16.
    Antweiler C, Telle A, Vary P et al (2006) New otological diagnostic system providing a virtual tube model. In: Proceedings of biomedical circuits and systems conference (BIOCAS). London, Great Britain, pp 21–24Google Scholar
  17. 17.
    Antweiler C, Vary P, Di Martino E (2006) Virtual time-variant model of the Eustachian tube. In: Proceedings of IEEE International symposium on circuits and systems (ISCAS). Island of Kos, Greece, pp 5559–5562Google Scholar
  18. 18.
    Van der Avoort SJ, Heerbeek N, Snik AF et al (2007) Reproducibility of sonotubometry as Eustachian tube ventilatory function test in healthy children. Int J Pediatr Otolaryngol 71:291–295CrossRefGoogle Scholar
  19. 19.
    Mondain M, Vidal D, Bouhanna S et al (1997) Monitoring Eustachian tube opening: preliminary results in normal subjects. Laryngoscope 107:1414–1419CrossRefPubMedGoogle Scholar
  20. 20.
    Muenker G. (1972). Function analysis of the Eustachian tube. methods and clinic. PhD thesis, University of Freiburg, GermanyGoogle Scholar
  21. 21.
    Krombach GA, Di Martino E, Nolte-Ernsting C et al (2000) Kernspintomografische Darstellung und Funktionsdiagnostik der Tuba auditiva Eustachii. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:748–752CrossRefPubMedGoogle Scholar
  22. 22.
    Di Martino E, Walther EL, Westhofen M (2005) Endoscopic examination of the Eustachian tube. A step by step approach. Otol Neurootol 26:1112–1117CrossRefGoogle Scholar
  23. 23.
    Iino Y, Kakizaki K, Saruya S et al (2006) Eustachian tube function in patients with eosinophilic otitis media associated with bronchial asthma evaluated by sonotubometry. Arch Otolaryngol Head Neck Surg 132(10):1109–1114CrossRefPubMedGoogle Scholar
  24. 24.
    Takano A, Takahashi H, Hatachi K et al (2007) Ligation of Eustachian tube for intractable patulous Eustachian tube: a preliminary report. Eur Arch Otorhinolaryngol 264(4):353–357CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ercole F. N. Di Martino
    • 1
  • Viorel Nath
    • 1
  • Aulis Telle
    • 2
  • Christiane Antweiler
    • 2
  • Leif E. Walther
    • 3
  • P. Vary
    • 2
  1. 1.Department of Otorhinolaryngology Head and Neck SurgeryDIAKO HospitalBremenGermany
  2. 2.Institute of Communication Systems and Data ProcessingRWTH Aachen UniversityAachenGermany
  3. 3.Centre of OtorhinolaryngologySulzbachGermany

Personalised recommendations