Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 266, Issue 10, pp 1509–1520 | Cite as

Advances in laryngeal imaging

  • Antanas Verikas
  • Virgilijus Uloza
  • Marija Bacauskiene
  • Adas Gelzinis
  • Edgaras Kelertas
Review Article

Abstract

Imaging and image analysis became an important issue in laryngeal diagnostics. Various techniques, such as videostroboscopy, videokymography, digital kymograpgy, or ultrasonography are available and are used in research and clinical practice. This paper reviews recent advances in imaging for laryngeal diagnostics.

Keywords

Larynx Image analysis High-speed video Digital kymography Videostroboscopy Glottal area detection 

Notes

Acknowledgments

We acknowledge the support from The Agency for International Science and Technology Development Programmes, Lithuania (COST Action 2103). We acknowledge very helpful comments from the anonymous reviewer.

Conflict of interest statement

There is no conflict of interest.

References

  1. 1.
    Alberti PW (1996) The history of laryngology: a centennial celebration. Otolaryngol Head Neck Surg 114:345–354PubMedCrossRefGoogle Scholar
  2. 2.
    Mafee MF, Valvassori GE, Becker M (2005) Imaging of the neck and head, 2nd edn. Thieme, StuttgartGoogle Scholar
  3. 3.
    Uloza V, Saferis V, Uloziene I (2005) Perceptual and acoustic assessment of voice pathology and the efficacy of endolaryngeal phonomicrosurgery. J Voice 19:138–145PubMedCrossRefGoogle Scholar
  4. 4.
    Gallivan KH, Gallivan GJ (2002) Bilateral mixed laryngoceles: simultaneous strobovideolaryngoscopy and external video examination. J Voice 16:258–266PubMedCrossRefGoogle Scholar
  5. 5.
    Rumboldt Z, Gordon L, Ackermann RBS (2006) Imaging in head and neck cancer. Curr Treat Options Oncol 7:23–34PubMedCrossRefGoogle Scholar
  6. 6.
    Ruffing S, Struffert T, Reith AGW (2005) Imaging diagnostics of the pharynx and larynx. Radiologe 45:828–836PubMedCrossRefGoogle Scholar
  7. 7.
    Hasso AN, Tang T (1994) Magnetic resonance imaging of the pharynx and larynx. Top Magn Reson Imaging 6:224–240PubMedGoogle Scholar
  8. 8.
    Hoorweg JJ, Kruijt RH, Heijboer RJ, Eijkemans MJ, Kerrebijn JD (2006) Reliability of interpretation of CT examination of the larynx in patients with glottic laryngeal carcinoma. Arch Otolaryngol Head Neck Surg 135:129–134CrossRefGoogle Scholar
  9. 9.
    Rubin JS, Lee S, McGuinness J, Hore I, Hill D, Berger L (2004) The potential role of ultrasound in differentiating solid and cystic swellings of the true vocal fold. J Voice 18:231–235PubMedCrossRefGoogle Scholar
  10. 10.
    Schade G, Kothe C, Leuwer R (2003) Sonography of the larynx—an alternative to laryngoscopy? HNO 51:585–590PubMedCrossRefGoogle Scholar
  11. 11.
    Boyanov B, Hadjitodorov S (1997) Acoustic analysis of pathological voices. A voice analysis system for the screening of laryngeal diseases. IEEE Eng Med Biol Mag 16:74–82PubMedCrossRefGoogle Scholar
  12. 12.
    Hadjitodorov S, Mitev P (2002) A computer system for acoustic analysis of pathological voices and laryngeal diseases screening. Med Eng Phys 24:419–429PubMedCrossRefGoogle Scholar
  13. 13.
    Moran RJ, Reilly RB, de Chazal P, Lacy PD (2006) Telephony-based voice pathology assessment using automated speech analysis. IEEE Trans Biomed Eng 53:468–477PubMedCrossRefGoogle Scholar
  14. 14.
    Umapathy K, Krishnan S, Parsa V, Jamieson DG (2005) Discrimination of pathological voices using a time-frequency approach. IEEE Trans Biomed Eng 52:421–430PubMedCrossRefGoogle Scholar
  15. 15.
    Hadjitodorov S, Boyanov B, Teston B (2000) Laryngeal pathology detection by means of class-specific neural maps. IEEE Trans Inf Technol Biomed 4:68–73PubMedCrossRefGoogle Scholar
  16. 16.
    Godino-Llorente JI, Gomez-Vilda P (2004) Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors. IEEE Trans Biomed Eng 51:380–384PubMedCrossRefGoogle Scholar
  17. 17.
    de Oliveira Rosa M, Pereira JC, Grellet M (2000) Adaptive estimation of residue signal for voice pathology diagnosis. IEEE Trans Biomed Eng 47:96–104CrossRefGoogle Scholar
  18. 18.
    Gelzinis A, Verikas A, Bacauskiene M (2008) Automated speech analysis applied to laryngeal disease categorization. Comput Methods Programs Biomed 91:36–47PubMedCrossRefGoogle Scholar
  19. 19.
    Verikas A, Gelzinis A, Bacauskiene M, Uloza V, Kaseta M (2009) Using the patient’s questionnaire data to screen laryngeal disorders. Comput Biol Med 39:148–155PubMedCrossRefGoogle Scholar
  20. 20.
    Hertegård S, Gauffin J (1995) Glottal area and vibratory patterns studied with simultaneous stroboscopy, flow glottography, and electroglottography. J Speech Hear Res 38:85–100PubMedGoogle Scholar
  21. 21.
    Henrich N, d’Alessandro C, Doval B, Castellengo M (2004) On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation. J Acoust Soc Am 115:1321–1332PubMedCrossRefGoogle Scholar
  22. 22.
    Ilgner JFR, Palm C, Schutz AG, Spitzer K, Westhofen M, Lehmann TM (2003) Colour texture analysis for quantitative laryngoscopy. Acta Otolaryngol 123:730–734PubMedCrossRefGoogle Scholar
  23. 23.
    Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621CrossRefGoogle Scholar
  24. 24.
    Gelzinis A, Verikas A, Bacauskiene M (2007) Increasing the discrimination power of the co-occurrence matrix-based features. Pattern Recognit 40:2367–2372CrossRefGoogle Scholar
  25. 25.
    Verikas A, Gelzinis A, Bacauskiene M, Uloza V (2006) Towards a computer-aided diagnosis system for vocal cord diseases. Artif Intell Med 36:71–84PubMedCrossRefGoogle Scholar
  26. 26.
    Verikas A, Gelzinis A, Valincius D, Bacauskiene M, Uloza V (2007) Multiple feature sets based categorization of laryngeal images. Comput Methods Programs Biomed 85:257–266PubMedCrossRefGoogle Scholar
  27. 27.
    Poels PJP, de Jong FICS, Schutte HK (2003) Consistency of the preoperative and intraoperative diagnosis of benign vocal fold lesions. J Voice 17:425–433PubMedCrossRefGoogle Scholar
  28. 28.
    Verikas A, Gelzinis A, Bacauskiene M, Uloza V (2006) Integrating global and local analysis of colour, texture and geometrical information for categorizing laryngeal images. Intern J Pattern Recognit Artif Intell 20:1187–1205CrossRefGoogle Scholar
  29. 29.
    Hanson DG, Jiang J, Chi W (1998) Quantitative color analysis of laryngeal erythema in chronic posterior laryngitis. J Voice 12:78–83PubMedCrossRefGoogle Scholar
  30. 30.
    Arens C, Reussner D, Woenkhaus J, Leunig A, Betz CS, Glanz H (2007) Indirect fluorescence laryngoscopy in the diagnosis of precancerous and cancerous laryngeal lesions. Eur Arch Otorhinolaryngol 264:621–626PubMedCrossRefGoogle Scholar
  31. 31.
    Arens C, Dreyer T, Glanz H, Malzahn K (2004) Indirect autofluorescence laryngoscopy in the diagnosis of laryngeal cancer and its precursor lesions. Eur Arch Otorhinolaryngol 261:71–76PubMedCrossRefGoogle Scholar
  32. 32.
    Baletic N, Petrovic Z, Pendjer I, Malicevic H (2004) Autofluorescent diagnostics in laryngeal pathology. Eur Arch Otorhinolaryngol 261:233–237PubMedCrossRefGoogle Scholar
  33. 33.
    Csanady M, Kiss JG, Ivan L, Jori J, Czigner J (2004) ALA (5-aminolevulinic acid)-induced protoporphyrin IX fluorescence in the endoscopic diagnostic and control of pharyngo-laryngeal cancer. Eur Arch Otorhinolaryngol 261:262–266PubMedCrossRefGoogle Scholar
  34. 34.
    Zargi M, Fajdiga I, Smid L (2000) Autofluorescence imaging in the diagnosis of laryngeal cancer. Eur Arch Otorhinolaryngol 257:17–23PubMedCrossRefGoogle Scholar
  35. 35.
    Hsiao TY, Wang CL, Chen CN, Hsieh FJ, Shau YW (2001) Noninvasive assessment of laryngeal phonation function using color doppler ultrasound imaging. Ultrasound Med Biol 27:1035–1040PubMedCrossRefGoogle Scholar
  36. 36.
    Hsiao TY, Wang CL, Chen CN, Hsieh FJ, Shau YW (2002) Elasticity of human vocal folds measured in vivo using color doppler imaging. Ultrasound Med Biol 28:1145–1152PubMedCrossRefGoogle Scholar
  37. 37.
    Shau YW, Wang CL, Hsieh FJ, Hsiao TY (2001) Noninvasive assessment of vocal fold mucosal wave velocity using color doppler imaging. Ultrasound Med Biol 27:1451–1460PubMedCrossRefGoogle Scholar
  38. 38.
    Niimi S, Matsunaga A, Hirose H (1992) Ultrasonic observation of the vertical movement of the larynx during phonation. In: Proceedings of international congress on acoustics, vol 1–4, Beijing, pp 1317–1318Google Scholar
  39. 39.
    Goncalves MI, Leonard R (1998) A hardware-software system for analysis of video images. J Voice 12:143–150PubMedCrossRefGoogle Scholar
  40. 40.
    Popolo PS, Titze IR (2008) Qualification of a quantitative laryngeal imaging system using videostroboscopy and videokymography. Ann Otol Rhinol Laryngol 117:404–412PubMedGoogle Scholar
  41. 41.
    Rihkanen H, Reijonen P, Lehikoinen-Soderlund S, Lauri ER (2004) Videostroboscopic assessment of unilateral vocal fold paralysis after augmentation with autologous fascia. Eur Arch Otorhinolaryngol 261:177–183PubMedCrossRefGoogle Scholar
  42. 42.
    Lee JS, Kim IE, Sung MW, Kim KH, Sung MY, Park KS (2001) A method for assessing the regional vibratory pattern of vocal folds by analysing the video recording of stroboscopy. Med Biol Eng Comput 39:273–278PubMedCrossRefGoogle Scholar
  43. 43.
    Woo P, Colton RH, Casper JK, Brewer DW (1991) Diagnostic value of stroboscopic examination in hoarse patients. J Voice 5:231–238CrossRefGoogle Scholar
  44. 44.
    Colton RH, Woo P, Brewer DW, Griffin B, Casper J (1995) Stroboscopic signs associated with benign lesions of the vocal folds. J Voice 9:312–325PubMedCrossRefGoogle Scholar
  45. 45.
    Sung MW, Kim KH, Koh TY, Kwon TY, Mo JH, Choi SH, Lee JS, Park KS, Kim EJ, Sung MY (1999) Videostrobokymography: a new method for the quantitative analysis of vocal fold vibration. Laryngoscope 109:1859–1863PubMedCrossRefGoogle Scholar
  46. 46.
    Sulter AM, Schutte HK, Miller DG (1996) Standardized laryngeal videostroboscopic rating: differences between untrained and trained male and female subjects, and effects of varying sound intensity fundamental frequency, and age. J Voice 10:175–189PubMedCrossRefGoogle Scholar
  47. 47.
    Deguchi S, Ishimaru Y, Washio S (2007) Preliminary evaluation of stroboscopy system using multiple light sources for observation of pathological vocal fold oscillatory pattern. Ann Otol Rhinol Laryngol 116:687–694PubMedGoogle Scholar
  48. 48.
    Schade G, Hess M, Muller F, Kirchhoff T, Ludwigs M, Hillman R, Kobler J (2002) Physical and technical elements of short-interval, color-filtered double strobe flash-stroboscopy. HNO 50:1079–1083PubMedCrossRefGoogle Scholar
  49. 49.
    Hess MM, Ludwigs M (2000) Strobophotoglottographic transillumination as a method for the analysis of vocal fold vibration patterns. J Voice 14:255–271PubMedCrossRefGoogle Scholar
  50. 50.
    Dailey SH, Kobler J, Hillman RE, Tangrom K, Thananart E, Mauri M, Zeitels SM (2005) Endoscopic measurement of vocal fold movement during adduction and abduction. Laryngoscope 115:178–183PubMedCrossRefGoogle Scholar
  51. 51.
    Svec JG, Schutte HK (1996) Videokymography: high-speed line scanning of vocal fold vibration. J Voice 10:201–205PubMedCrossRefGoogle Scholar
  52. 52.
    Schutte HK, Svec JG, Sram F (1998) First results of clinical application of videokymography. Laryngoscope 108:1206–1210PubMedCrossRefGoogle Scholar
  53. 53.
    Qiu QJ, Schutte HK (2006) A new generation videokymography for routine clinical vocal fold examination. Laryngoscope 116:1824–1828PubMedCrossRefGoogle Scholar
  54. 54.
    Qiu QJ, Schutte HK (2007) Real-time kymographic imaging for visualizing human vocal-fold vibratory function. Rev Sci Instrum 78:1–6Google Scholar
  55. 55.
    Manfredi C, Bocchi L, Bianchi S, Migali N, Cantarella G (2006) Objective vocal fold vibration assessment from videokymographic images. Biomed Signal Process Control 1:129–136CrossRefGoogle Scholar
  56. 56.
    de Leeuw IMV, Festen JM, Mahieu HF (2001) Deviant vocal fold vibration as observed during videokymography: the effect on voice quality. J Voice 15:313–322CrossRefGoogle Scholar
  57. 57.
    Eysholdt U, Tigges M, Wittenberg T, Proschel U (1996) Direct evaluation of high-speed recordings of vocal fold vibrations. Folia Phoniatr Logop 48:163–170PubMedCrossRefGoogle Scholar
  58. 58.
    Kiritani S, Honda K, Imagawa H, Hirose H (1986) Simultaneous high-speed digital recording of vocal fold vibration and speech signal. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, vol 11, Tokyo, pp 1633–1636Google Scholar
  59. 59.
    Kiritani S, Imagawa H, Hirose H (1988) High-speed digital image recording for the observation of vocal cord vibration. In: Vocal physiology: voice production, mechanism, and functions. Raven Press, New York, pp 261–269Google Scholar
  60. 60.
    Kiritani S, Imagawa H, Hirose H (1990) Vocal cord vibration and voice source characteristics—observations by a high-speed digital recording. In: Proceedings of the international conference on spoken language processing (ICSLP ’90), Kobe, pp 61–64Google Scholar
  61. 61.
    Kiritani S, Hirose H, Imagawa H (1993) High-speed digital image-analysis of vocal cord vibration in diplophonia. Speech Commun 13:23–32CrossRefGoogle Scholar
  62. 62.
    Kiritani S, Hirose H, Imagawa H (1993) High-speed digital image recording system for observing vocal cord vibration. Ann Bull RILP 27:79–87Google Scholar
  63. 63.
    Sakakibara KT, Imagawa H, Konishi T, Kondo K, Murano EZ, Kumada M, Niimi S (2001) Vocal fold and false vocal fold vibrations in throat singing and synthesis of khöömei. In: Proceedings of the international computer music conference 2001, Havana, Cuba, International Computer Music Association, pp 135–138Google Scholar
  64. 64.
    Hertegard S (2005) What have we learned about laryngeal physiology from high-speed digital videoendoscopy? Curr Opin Otolaryngol Head Neck Surg 13:152–156PubMedCrossRefGoogle Scholar
  65. 65.
    Kendall KA, Browning MM, Skovlund SM (2005) Introduction to high-speed imaging of the larynx. Curr Opin Otolaryngol Head Neck Surg 13:135–137PubMedCrossRefGoogle Scholar
  66. 66.
    Schwarz R, Dollinger M, Wurzbacher T, Eysholdt U, Lohscheller J (2008) Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model. J Acoust Soc Am 123:2717–2732PubMedCrossRefGoogle Scholar
  67. 67.
    Tigges M, Wittenberg T, Mergell P, Eysholdt U (1999) Imaging of vocal fold vibration by digital multi-plane kymography. Comput Med Imaging Graph 23:323–330PubMedCrossRefGoogle Scholar
  68. 68.
    Kim DY, Kim LS, Kim KH, Sung MW, Roh JL, Kwon TK, Lee SJ, Choi SH, Wang SG, Sung MY (2003) Videostrobokymographic analysis of benign vocal fold lesions. Acta Otolaryngol 123:1102–1109PubMedCrossRefGoogle Scholar
  69. 69.
    Eysholdt U, Rosanowski F, Hoppe U (2003) Vocal fold vibration irregularities caused by different types of laryngeal asymmetry. Eur Arch Otorhinolaryngol 260:412–417PubMedCrossRefGoogle Scholar
  70. 70.
    Lohscheller J, Toy H, Rosanowski F, Eysholdt U, Dollinger M (2007) Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos. Med Image Anal 11:400–413PubMedCrossRefGoogle Scholar
  71. 71.
    Deliyski DD (2005) Endoscope motion compensation for laryngeal high-speed videoendoscopy. J Voice 19:485–496PubMedCrossRefGoogle Scholar
  72. 72.
    Deliyski D, Petrushev P (2003) Methods for objective assessment of high-speed videoendoscopy. In: Proceedings of the 6th international conference: advances in quantitative laryngology, voice and speech research, AQL-2003, Hamburg, Germany, pp 1–16Google Scholar
  73. 73.
    Tao C, Zhang Y, Jiang JJ (2007) Extracting physiologically relevant parameters of vocal folds from high-speed video image series. IEEE Trans Biomed Eng 54:794–801PubMedCrossRefGoogle Scholar
  74. 74.
    Yan Y, Ahmad K, Kunduk M, Bless D (2005) Analysis of vocal-fold vibrations from high-speed laryngeal images using a Hilbert transform-based methodology. J Voice 19:161–175PubMedCrossRefGoogle Scholar
  75. 75.
    Yan Y, Bless D, Chen X (2005) Biomedical image analysis in high-speed laryngeal imaging of voice production. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, Shanghai, pp 7684–7687Google Scholar
  76. 76.
    Larsson H, Hertegard S, Lindestad PA, Hammarberg B (2000) Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report. Laryngoscope 110:2117–2122PubMedCrossRefGoogle Scholar
  77. 77.
    Yan Y, Chen X, Bless D (2006) Automatic tracing of vocal-fold motion from high-speed digital images. IEEE Trans Biomed Eng 53:1394–1400PubMedCrossRefGoogle Scholar
  78. 78.
    Wittenberg T, Moser M, Tigges M, Eysholdt U (1995) Recording, processing, and analysis of digital high-speed sequences in glottography. Mach Vis Appl 8:399–404Google Scholar
  79. 79.
    Allin S, Galeotti J, Stetten G, Dailey SH (2004) Enhanced snake based segmentation of vocal folds. In: Proceedings of the IEEE international symposium on biomedical imaging, Washington, DC, IEEE, pp 812–815Google Scholar
  80. 80.
    Marendic B, Galatsanos N, Bless D (2001) A new active contour algorithm for tracking vocal folds. In: Proceedings of the IEEE international conference on image processing, Thessaloniki, pp 397–400Google Scholar
  81. 81.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRefGoogle Scholar
  82. 82.
    Lohscheller J, Dollinger M, Schuster M, Schwarz R, Eysholdt U, Hoppe U (2004) Quantitative investigation of the vibration pattern of the substitute voice generator. IEEE Trans Biomed Eng 51:1394–1400PubMedCrossRefGoogle Scholar
  83. 83.
    Osma-Ruiz V, Godino-Llorente JI, Saenz-Lechon N, Fraile R (2008) Segmentation of the glottal space from laryngeal images using the watershed transform. Comput Med Imaging Graph 32:193–201PubMedCrossRefGoogle Scholar
  84. 84.
    Lohscheller J, Eysholdt U, Toy H, Dollinger M (2008) Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-d diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Trans Med Imaging 27:300–309PubMedCrossRefGoogle Scholar
  85. 85.
    Braunschweig T, Schelhorn-Neise P, Dollinger M (2008) Diagnosis of functional voice disorders by using the high speed recording technics. Laryngorhinootologie 87:323–330PubMedCrossRefGoogle Scholar
  86. 86.
    Mortensen M, Woo P (2008) High-speed imaging used to detect vocal fold paresis: a case report. Ann Otol Rhinol Laryngol 117:684–687PubMedGoogle Scholar
  87. 87.
    Dollinger M, Braunschweig T, Lohscheller J, Eysholdt U, Hoppe U (2003) Normal voice production: computation of driving parameters from endoscopic digital high speed images. Methods Inf Med 42:271–276PubMedGoogle Scholar
  88. 88.
    Braunschweig T, Flaschka J, Schelhorn-Neise P, Dollinger M (2008) High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias. Med Eng Phys 30:59–66PubMedCrossRefGoogle Scholar
  89. 89.
    Dollinger M, Hoppe U, Hettlich F, Lohscheller J, Schuberth S, Eysholdt U (2002) Vibration parameter extraction from endoscopic image series of the vocal folds. IEEE Trans Biomed Eng 49:773–781PubMedCrossRefGoogle Scholar
  90. 90.
    Schwarz R, Hoppe U, Schuster M, Wurzbacher T, Eysholdt U, Lohscheller J (2006) High-precision measurement of the vocal fold length and vibratory amplitudes. IEEE Trans Biomed Eng 53:1099–1108PubMedCrossRefGoogle Scholar
  91. 91.
    Mergell P, Herzel HP, Titze IR (2000) Irregular vocal-fold vibration—high speed observation and modeling. J Acoust Soc Am 108:2996–3002PubMedCrossRefGoogle Scholar
  92. 92.
    Yan Y, Damrose E, Bless D (2007) Automatic tracing of vocal-fold motion from high-speed digital images. J Voice 21:604–616PubMedCrossRefGoogle Scholar
  93. 93.
    Lohscheller J, Doellinger M, McWhorter AJ, Kunduk M (2008) Preliminary study on the quantitative analysis of vocal loading effects on vocal fold dynamics using phonovibrograms. Ann Otol Rhinol Laryngol 117:484–493PubMedGoogle Scholar
  94. 94.
    Granqvist S, Lindestad PA (2001) A method of applying fourier analysis to high-speed laryngoscopy. J Acoust Soc Am 110:3193–3197PubMedCrossRefGoogle Scholar
  95. 95.
    Wittenberg T, Tigges M, Mergell P, Eysholdt U (2000) Functional imaging of vocal fold vibration: digital multislice high-speed kymography. J Voice 14:422–442PubMedCrossRefGoogle Scholar
  96. 96.
    Eysholdt U, Rosanowski F, Hoppe U (2003) Measurement and interpretation of irregular vocal fold vibrations. HNO 51:710–716PubMedCrossRefGoogle Scholar
  97. 97.
    Liu L, Galatsanos N, Bless D (2002) A new approach for analysis of vibrating vocal folds. In: Proceedings of the IEEE international symposium on biomedical imaging, Washington, DC, pp 589–592Google Scholar
  98. 98.
    Kiritani S, Niimi S, Imagawa H, Hirose H (1995) Vocal fold vibrations associated with involuntary voice changes in certain pathological cases. In: Vocal fold physiology: voice quality control. Vocal Fold Physiology Series, Kurume, Japan, pp 269–281Google Scholar
  99. 99.
    Koster O, Marx B, Gemmar P, Hess MM, Ktinzel HJ (1999) Qualitative and quantitative analysis of voice onset by means of a multidimensional voice analysis system (mvas) using high-speed imaging. J Voice 13:355–374PubMedCrossRefGoogle Scholar
  100. 100.
    Bailly L, Henrich N, Webb M, Muller F, Licht AK, Hess M (2007) Exploration of vocal-folds and ventricular-bands interaction in singing using high-speed cinematography and electroglottography. In: 19th international congress on acoustics, Madrid, Spain, pp 1–6Google Scholar
  101. 101.
    Granqvist S, Hertegård S, Larsson H, Sundberg J (2003) Simultaneous analysis of vocal fold vibration and transglottal airflow: exploring a new experimental setup. J Voice 17:319–330PubMedCrossRefGoogle Scholar
  102. 102.
    Lindestad PA, Sodersten M, Merker B, Granqvist S (2001) Voice source characteristics in mongolian “throat singing” studied with high-speed imaging technique, acoustic spectra, and inverse filtering. J Voice 15:78–85PubMedCrossRefGoogle Scholar
  103. 103.
    Svec JG, Schutte HK (2005) Accuracy of measurements on digital videostroboscopic images of the vocal folds. Ann Otol Rhinol Laryngol 114:443–450Google Scholar
  104. 104.
    Schuberth S, Hoppe U, Dollinger M, Lohscheller J, Eysholdt U (2002) High-precision measurement of the vocal fold length and vibratory amplitudes. Laryngoscope 112:1043–1049PubMedCrossRefGoogle Scholar
  105. 105.
    Schuster M, Lohscheller J, Kummer P, Eysholdt U, Hoppe U (2005) Laser projection in high-speed glottography for high-precision measurements of laryngeal dimensions and dynamics. Eur Arch Otorhinolaryngol 262:477–481PubMedCrossRefGoogle Scholar
  106. 106.
    Wurzbacher T, Voigt I, Schwarz R, Dollinger M, Hoppe U, Penne J, Eysholdt U, Lohscheller J (2008) Calibration of laryngeal endoscopic high-speed image sequences by an automated detection of parallel laser line projections. Med Image Anal 12:300–317PubMedCrossRefGoogle Scholar
  107. 107.
    Schade G, Muller F (2005) Physical and technical elements of short-interval, color-filtered double strobe flash-stroboscopy. HNO 53:1085–1091PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Antanas Verikas
    • 1
    • 2
  • Virgilijus Uloza
    • 3
  • Marija Bacauskiene
    • 2
  • Adas Gelzinis
    • 2
  • Edgaras Kelertas
    • 2
  1. 1.Intelligent Systems LaboratoryHalmstad UniversityHalmstadSweden
  2. 2.Department of Applied ElectronicsKaunas University of TechnologyKaunasLithuania
  3. 3.Department of OtolaryngologyKaunas University of MedicineKaunasLithuania

Personalised recommendations