European Archives of Oto-Rhino-Laryngology

, Volume 266, Issue 2, pp 161–170 | Cite as

The Stem Cell Network model: clinical implications in cancer

  • Rubén Cabanillas
  • José L. LlorenteEmail author
Review Article


This review will discuss the aspects of stem cell biology that can contribute to explain tumor development and why standard oncology treatments sometimes fail. We also propose an integrated model of tumor progression based on the putative occurrence of Stem Cell Networks (SCNs). In a SCN, the somatic stem cells are derived from a common embryonic stem cell, share a specific molecular profile and maintain a high degree of cell-cycle synchronization. In the study of cancer, the SCN model introduces an additional conceptual frame to the interpretation of both the cancer stem cell (CSC) hypothesis and the field cancerization concept. The CSC model may explain how the cancer fields develop, justifies their sizes and shapes, contribute to explain the local recurrences in patients with free margins, the second primary tumors, the success of organ preserving surgical approaches or the trend of different tumors to metastasize to certain locations. We propose that the SCN model of cancer provides some clues for further understanding tumor progression and raises promising experimental and clinical implications.


Cancer stem cells Field cancerization Head and neck squamous cell carcinomas Screening Carcinogenesis 



We wish to thank Dr. Carlos López-Otín, Dr. Jose M. P. Freije, Dr. Xose S. Puente and Dr. Agnes Noel for critical appraisal of the manuscript.


  1. 1.
    Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890. doi: 10.1158/0008-5472.CAN-05-3153. Discussion 1895–1896PubMedCrossRefGoogle Scholar
  2. 2.
    Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5:311–321. doi: 10.1038/nrc1592 PubMedCrossRefGoogle Scholar
  3. 3.
    Bruce WR, Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79–80. doi: 10.1038/199079a0 PubMedCrossRefGoogle Scholar
  4. 4.
    Park CH, Bergsagel DE, McCulloch EA (1971) Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 46:411–422PubMedGoogle Scholar
  5. 5.
    Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463. doi: 10.1126/science.560061 PubMedCrossRefGoogle Scholar
  6. 6.
    Buzzeo MP, Scott EW, Cogle CR (2007) The hunt for cancer-initiating cells: a history stemming from leukemia. Leukemia 21(8):1619–1627PubMedCrossRefGoogle Scholar
  7. 7.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. doi: 10.1038/35102167 PubMedCrossRefGoogle Scholar
  8. 8.
    Hill RP (2006) Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 66:1891–1895. doi: 10.1158/0008-5472.CAN-05-3450. Discussion 1890PubMedCrossRefGoogle Scholar
  9. 9.
    Blagosklonny MV (2006) Target for cancer therapy: proliferating cells or stem cells. Leukemia 20:385–391. doi: 10.1038/sj.leu.2404075 PubMedCrossRefGoogle Scholar
  10. 10.
    Massard C, Deutsch E, Soria JC (2006) Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17:1620–1624. doi: 10.1093/annonc/mdl074 PubMedCrossRefGoogle Scholar
  11. 11.
    Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778. doi: 10.1016/S0092-8674(04)00255-7 PubMedCrossRefGoogle Scholar
  12. 12.
    Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079. doi: 10.1038/nature04957 PubMedCrossRefGoogle Scholar
  13. 13.
    Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648. doi: 10.1038/367645a0 PubMedCrossRefGoogle Scholar
  14. 14.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988. doi: 10.1073/pnas.0530291100 PubMedCrossRefGoogle Scholar
  15. 15.
    Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi: 10.1038/nature03128 PubMedCrossRefGoogle Scholar
  16. 16.
    Gibbs CP, Kukekov VG, Reith JD et al (2005) Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7:967–976. doi: 10.1593/neo.05394 PubMedCrossRefGoogle Scholar
  17. 17.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. doi: 10.1038/nature05372 PubMedCrossRefGoogle Scholar
  18. 18.
    Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037. doi: 10.1158/0008-5472.CAN-06-2030 PubMedCrossRefGoogle Scholar
  19. 19.
    Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H (2006) Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA 103:1480–1485. doi: 10.1073/pnas.0510652103 PubMedCrossRefGoogle Scholar
  20. 20.
    Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978. doi: 10.1073/pnas.0610117104 PubMedCrossRefGoogle Scholar
  21. 21.
    Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–448. doi: 10.1101/gad.1627008 PubMedCrossRefGoogle Scholar
  22. 22.
    Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 134(4):10158–10163CrossRefGoogle Scholar
  23. 23.
    Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902. doi: 10.1038/nrc1232 PubMedCrossRefGoogle Scholar
  24. 24.
    Tan BT, Park CY, Ailles LE, Weissman IL (2006) The cancer stem cell hypothesis: a work in progress. Lab Invest 86:1203–1207. doi: 10.1038/labinvest.3700488 PubMedCrossRefGoogle Scholar
  25. 25.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737. doi: 10.1038/nm0797-730 PubMedCrossRefGoogle Scholar
  26. 26.
    Yuan Y, Zhou L, Miyamoto T et al (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 98:10398–10403. doi: 10.1073/pnas.171321298 PubMedCrossRefGoogle Scholar
  27. 27.
    Zhou Z, Flesken-Nikitin A, Nikitin AY (2007) Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res 67(12):5683–5690PubMedCrossRefGoogle Scholar
  28. 28.
    Xin L, Lawson DA, Witte ON (2005) The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102:6942–6947. doi: 10.1073/pnas.0502320102 PubMedCrossRefGoogle Scholar
  29. 29.
    Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146. doi: 10.1038/nature06534 PubMedCrossRefGoogle Scholar
  30. 30.
    Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi: 10.1126/science.1151526 PubMedCrossRefGoogle Scholar
  31. 31.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 PubMedCrossRefGoogle Scholar
  32. 32.
    Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2:333–344. doi: 10.1016/j.stem.2008.02.009 PubMedCrossRefGoogle Scholar
  33. 33.
    Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6:963–968. doi :10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-QPubMedCrossRefGoogle Scholar
  34. 34.
    Tabor MP, Brakenhoff RH, Ruijter-Schippers HJ, Kummer JA, Leemans CR, Braakhuis BJ (2004) Genetically altered fields as origin of locally recurrent head and neck cancer: a retrospective study. Clin Cancer Res 10:3607–3613. doi: 10.1158/1078-0432.CCR-03-0632 PubMedCrossRefGoogle Scholar
  35. 35.
    Sui G, Zhou S, Wang J et al (2006) Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract: a biomarker for the early detection of cancer. Mol Cancer 5:73. doi: 10.1186/1476-4598-5-73 PubMedCrossRefGoogle Scholar
  36. 36.
    Shen L, Kondo Y, Rosner GL et al (2005) MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst 97:1330–1338PubMedCrossRefGoogle Scholar
  37. 37.
    Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274:2057–2059. doi: 10.1126/science.274.5295.2057 PubMedCrossRefGoogle Scholar
  38. 38.
    Heaphy CM, Bisoffi M, Fordyce CA et al (2006) Telomere DNA content and allelic imbalance demonstrate field cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer 119:108–116. doi: 10.1002/ijc.21815 PubMedCrossRefGoogle Scholar
  39. 39.
    Ha PK, Tong BC, Westra WH et al (2002) Mitochondrial C-tract alteration in premalignant lesions of the head and neck: a marker for progression and clonal proliferation. Clin Cancer Res 8:2260–2265PubMedGoogle Scholar
  40. 40.
    Chandran UR, Dhir R, Ma C, Michalopoulos G, Becich M, Gilbertson J (2005) Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer 5:45. doi: 10.1186/1471-2407-5-45 PubMedCrossRefGoogle Scholar
  41. 41.
    Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH (2003) A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 63:1727–1730PubMedGoogle Scholar
  42. 42.
    Garcia SB, Park HS, Novelli M, Wright NA (1999) Field cancerization, clonality, and epithelial stem cells: the spread of mutated clones in epithelial sheets. J Pathol 187:61–81. doi :10.1002/(SICI)1096-9896(199901)187:1<61::AID-PATH247>3.0.CO;2-IPubMedCrossRefGoogle Scholar
  43. 43.
    Tabor MP, Brakenhoff RH, van Houten VM et al (2001) Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin Cancer Res 7:1523–1532PubMedGoogle Scholar
  44. 44.
    Roesch-Ely M, Nees M, Karsai S et al (2007) Proteomic analysis reveals successive aberrations in protein expression from healthy mucosa to invasive head and neck cancer. Oncogene 26:54–64. doi: 10.1038/sj.onc.1209770 PubMedCrossRefGoogle Scholar
  45. 45.
    Wong DJ, Paulson TG, Prevo LJ et al (2001) p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res 61:8284–8289PubMedGoogle Scholar
  46. 46.
    Kim SK, Jang HR, Kim JH et al (2006) The epigenetic silencing of LIMS2 in gastric cancer and its inhibitory effect on cell migration. Biochem Biophys Res Commun 349:1032–1040. doi: 10.1016/j.bbrc.2006.08.128 PubMedCrossRefGoogle Scholar
  47. 47.
    Tang M, Baez S, Pruyas M et al (2004) Mitochondrial DNA mutation at the D310 (displacement loop) mononucleotide sequence in the pathogenesis of gallbladder carcinoma. Clin Cancer Res 10:1041–1046. doi: 10.1158/1078-0432.CCR-0701-3 PubMedCrossRefGoogle Scholar
  48. 48.
    Durham SE, Krishnan KJ, Betts J, Birch-Machin MA (2003) Mitochondrial DNA damage in non-melanoma skin cancer. Br J Cancer 88:90–95. doi: 10.1038/sj.bjc.6600773 PubMedCrossRefGoogle Scholar
  49. 49.
    Chu TY, Shen CY, Lee HS, Liu HS (1999) Monoclonality and surface lesion-specific microsatellite alterations in premalignant and malignant neoplasia of uterine cervix: a local field effect of genomic instability and clonal evolution. Genes Chromosomes Cancer 24:127–134. doi :10.1002/(SICI)1098-2264(199902)24:2<127::AID-GCC5>3.0.CO;2-8PubMedCrossRefGoogle Scholar
  50. 50.
    Rosenthal AN, Ryan A, Hopster D, Jacobs IJ (2002) Molecular evidence of a common clonal origin and subsequent divergent clonal evolution in vulval intraepithelial neoplasia, vulval squamous cell carcinoma and lymph node metastases. Int J Cancer 99:549–554. doi: 10.1002/ijc.10362 PubMedCrossRefGoogle Scholar
  51. 51.
    Kakizoe T (2006) Development and progression of urothelial carcinoma. Cancer Sci 97:821–828. doi: 10.1111/j.1349-7006.2006.00264.x PubMedCrossRefGoogle Scholar
  52. 52.
    Grepmeier U, Dietmaier W, Merk J et al (2005) Deletions at chromosome 2q and 12p are early and frequent molecular alterations in bronchial epithelium and NSCLC of long-term smokers. Int J Oncol 27:481–488PubMedGoogle Scholar
  53. 53.
    Furlan D, Carnevali I, Marcomini B et al (2006) The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res 12:3329–3336. doi: 10.1158/1078-0432.CCR-05-2679 PubMedCrossRefGoogle Scholar
  54. 54.
    Kitago M, Ueda M, Aiura K et al (2004) Comparison of K-ras point mutation distributions in intraductal papillary-mucinous tumors and ductal adenocarcinoma of the pancreas. Int J Cancer 110:177–182. doi: 10.1002/ijc.20084 PubMedCrossRefGoogle Scholar
  55. 55.
    Hanson JA, Gillespie JW, Grover A et al (2006) Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst 98:255–261PubMedGoogle Scholar
  56. 56.
    Kros JM, Zheng P, Dinjens WN, Alers JC (2002) Genetic aberrations in gliomatosis cerebri support monoclonal tumorigenesis. J Neuropathol Exp Neurol 61:806–814PubMedGoogle Scholar
  57. 57.
    Brodsky RA, Jones RJ (2004) Riddle: what do aplastic anemia, acute promyelocytic leukemia, and chronic myeloid leukemia have in common? Leukemia 18:1740–1742. doi: 10.1038/sj.leu.2403487 PubMedCrossRefGoogle Scholar
  58. 58.
    Whetton AD, Graham GJ (1999) Homing and mobilization in the stem cell niche. Trends Cell Biol 9:233–238. doi: 10.1016/S0962-8924(99)01559-7 PubMedCrossRefGoogle Scholar
  59. 59.
    Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571. doi: 10.1126/science.1099513 PubMedCrossRefGoogle Scholar
  60. 60.
    Wels J, Kaplan RN, Rafii S, Lyden D (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22:559–574. doi: 10.1101/gad.1636908 PubMedCrossRefGoogle Scholar
  61. 61.
    Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749. doi: 10.1038/nrc1694 PubMedCrossRefGoogle Scholar
  62. 62.
    Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  63. 63.
    Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317(5836):381–384PubMedCrossRefGoogle Scholar
  64. 64.
    Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823. doi: 10.1038/418823a PubMedCrossRefGoogle Scholar
  65. 65.
    Dakubo GD, Jakupciak JP, Birch-Machin MA, Parr RL (2007) Clinical implications and utility of field cancerization. Cancer Cell Int 7:2. doi: 10.1186/1475-2867-7-2 PubMedCrossRefGoogle Scholar
  66. 66.
    Hoffman HT, Porter K, Karnell LH et al (2006) Laryngeal cancer in the United States: changes in demographics, patterns of care, and survival. Laryngoscope 116:1–13. doi: 10.1097/01.mlg.0000236095.97947.26 PubMedCrossRefGoogle Scholar
  67. 67.
    Seiwert TY, Salama JK, Vokes EE (2007) The chemoradiation paradigm in head and neck cancer. Nat Clin Pract Oncol 4:156–171. doi: 10.1038/ncponc0750 PubMedCrossRefGoogle Scholar
  68. 68.
    Brennan JA, Mao L, Hruban RH et al (1995) Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med 332:429–435. doi: 10.1056/NEJM199502163320704 PubMedCrossRefGoogle Scholar
  69. 69.
    van Houten VM, Tabor MP, van den Brekel MW et al (2002) Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J Pathol 198:476–486. doi: 10.1002/path.1242 PubMedCrossRefGoogle Scholar
  70. 70.
    Califano J, Leong PL, Koch WM, Eisenberger CF, Sidransky D, Westra WH (1999) Second esophageal tumors in patients with head and neck squamous cell carcinoma: an assessment of clonal relationships. Clin Cancer Res 5:1862–1867PubMedGoogle Scholar
  71. 71.
    Tabor MP, van Houten VM, Kummer JA et al (2002) Discordance of genetic alterations between primary head and neck tumors and corresponding metastases associated with mutational status of the TP53 gene. Genes Chromosomes Cancer 33:168–177. doi: 10.1002/gcc.10019 PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang HB, Ren CP, Yang XY et al (2007) Identification of label-retaining cells in nasopharyngeal epithelia and nasopharyngeal carcinoma tissues. Histochem Cell Biol 127:347–354. doi: 10.1007/s00418-006-0251-9 PubMedCrossRefGoogle Scholar
  73. 73.
    Thomson PJ, Potten CS, Appleton DR (1999) Mapping dynamic epithelial cell proliferative activity within the oral cavity of man: a new insight into carcinogenesis? Br J Oral Maxillofac Surg 37:377–383. doi: 10.1054/bjom.1999.0130 PubMedCrossRefGoogle Scholar
  74. 74.
    Prevo LJ, Sanchez CA, Galipeau PC, Reid BJ (1999) p53-mutant clones and field effects in Barrett’s esophagus. Cancer Res 59:4784–4787PubMedGoogle Scholar
  75. 75.
    Kraus DH, Zelefsky MJ, Brock HA, Huo J, Harrison LB, Shah JP (1997) Combined surgery and radiation therapy for squamous cell carcinoma of the hypopharynx. Otolaryngol Head Neck Surg 116:637–641. doi: 10.1016/S0194-5998(97)70240-7 PubMedCrossRefGoogle Scholar
  76. 76.
    Braakhuis BJ, Tabor MP, Leemans CR, van der Waal I, Snow GB, Brakenhoff RH (2002) Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular techniques provide new insights and definitions. Head Neck 24:198–206. doi: 10.1002/hed.10042 PubMedCrossRefGoogle Scholar
  77. 77.
    Hinerman RW, Morris CG, Amdur RJ et al (2006) Surgery and postoperative radiotherapy for squamous cell carcinoma of the larynx and pharynx. Am J Clin Oncol 29:613–621. doi: 10.1097/01.coc.0000242319.09994.78 PubMedCrossRefGoogle Scholar
  78. 78.
    Potten CS, Booth D, Cragg NJ et al (2002) Cell kinetic studies in the murine ventral tongue epithelium: thymidine metabolism studies and circadian rhythm determination. Cell Prolif 35(Suppl 1):1–15. doi: 10.1046/j.1365-2184.35.s1.1.x PubMedCrossRefGoogle Scholar
  79. 79.
    Laranne J, Back L, Koivunen P, Pukkila M, Pulkkinen J, Grenman R (2005) Hypopharyngeal carcinoma in Finland from 1990–1999. Eur Arch Otorhinolaryngol 262:374–378. doi: 10.1007/s00405-004-0847-4 PubMedCrossRefGoogle Scholar
  80. 80.
    Neville BW, Day TA (2002) Oral cancer and precancerous lesions. CA Cancer J Clin 52:195–215PubMedGoogle Scholar
  81. 81.
    Ritoe SC, Krabbe PF, Kaanders JH, van den Hoogen FJ, Verbeek AL, Marres HA (2004) Value of routine follow-up for patients cured of laryngeal carcinoma. Cancer 101:1382–1389. doi: 10.1002/cncr.20536 PubMedCrossRefGoogle Scholar
  82. 82.
    Alvarez Marcos CA, Llorente Pendas JL, Franco Gutierrez V et al (2007) Tumour recurrence in squamous head and neck cancer. Acta Otorrinolaringol Esp 58:156–163PubMedGoogle Scholar
  83. 83.
    Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017. doi: 10.1182/blood-2006-05-021758 PubMedCrossRefGoogle Scholar
  84. 84.
    Massengale M, Wagers AJ, Vogel H, Weissman IL (2005) Hematopoietic cells maintain hematopoietic fates upon entering the brain. J Exp Med 201:1579–1589. doi: 10.1084/jem.20050030 PubMedCrossRefGoogle Scholar
  85. 85.
    Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259. doi: 10.1126/science.1074807 PubMedCrossRefGoogle Scholar
  86. 86.
    Nomura S, Kaminishi M, Sugiyama K, Oohara T, Esumi H (1996) Clonal analysis of isolated single fundic and pyloric gland of stomach using X-linked polymorphism. Biochem Biophys Res Commun 226:385–390. doi: 10.1006/bbrc.1996.1365 PubMedCrossRefGoogle Scholar
  87. 87.
    Jiang X, Hitchcock A, Bryan EJ et al (1996) Microsatellite analysis of endometriosis reveals loss of heterozygosity at candidate ovarian tumor suppressor gene loci. Cancer Res 56:3534–3539PubMedGoogle Scholar
  88. 88.
    Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS (1996) Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res 56:402–404PubMedGoogle Scholar
  89. 89.
    Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L et al (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177:87–101. doi: 10.1083/jcb.200611114 PubMedCrossRefGoogle Scholar
  90. 90.
    Teixeira MR, Ribeiro FR, Torres L et al (2004) Assessment of clonal relationships in ipsilateral and bilateral multiple breast carcinomas by comparative genomic hybridisation and hierarchical clustering analysis. Br J Cancer 91:775–782PubMedGoogle Scholar
  91. 91.
    Humphrey LL, Helfand M, Chan BK, Woolf SH (2002) Breast cancer screening: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 137:347–360PubMedGoogle Scholar
  92. 92.
    Gray LC, Vaidya JS, Baum M et al (2004) Functional maps of metastases from breast cancers: proof of the principle that multidimensional scaling can summarize disease progression. World J Surg 28:646–651. doi: 10.1007/s00268-004-7207-9 PubMedCrossRefGoogle Scholar
  93. 93.
    Franklin WA, Gazdar AF, Haney J et al (1997) Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J Clin Invest 100:2133–2137. doi: 10.1172/JCI119748 PubMedCrossRefGoogle Scholar
  94. 94.
    Park IW, Wistuba I, Maitra A et al (1999) Multiple clonal abnormalities in the bronchial epithelium of patients with lung cancer. J Natl Cancer Inst 91:1863–1868. doi: 10.1093/jnci/91.21.1863 PubMedCrossRefGoogle Scholar
  95. 95.
    Locke M, Heywood M, Fawell S, Mackenzie IC (2005) Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 65:8944–8950. doi: 10.1158/0008-5472.CAN-05-0931 PubMedCrossRefGoogle Scholar
  96. 96.
    Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. doi: 10.1038/nature05236 PubMedCrossRefGoogle Scholar
  97. 97.
    Yilmaz OH, Valdez R, Theisen BK et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482. doi: 10.1038/nature04703 PubMedCrossRefGoogle Scholar
  98. 98.
    Todaro M, Alea MP, Di Stefano AB et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402. doi: 10.1016/j.stem.2007.08.001 PubMedCrossRefGoogle Scholar
  99. 99.
    Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82. doi: 10.1016/j.ccr.2006.11.020 PubMedCrossRefGoogle Scholar
  100. 100.
    Cabanillas R, Rodrigo JP, Llorente JL, Suarez V, Ortega P, Suarez C (2004) Functional outcomes of transoral laser surgery of supraglottic carcinoma compared with a transcervical approach. Head Neck 26:653–659. doi: 10.1002/hed.20063 PubMedCrossRefGoogle Scholar
  101. 101.
    Myers EN, Alvi A (1996) Management of carcinoma of the supraglottic larynx: evolution, current concepts, and future trends. Laryngoscope 106:559–567. doi: 10.1097/00005537-199605000-00008 PubMedCrossRefGoogle Scholar
  102. 102.
    Lee SC, Shores CG, Weissler MC (2008) Salvage surgery after failed primary concomitant chemoradiation. Curr Opin Otolaryngol Head Neck Surg 16:135–140PubMedCrossRefGoogle Scholar
  103. 103.
    Marioni G, Marchese-Ragona R, Lucioni M, Staffieri A (2008) Organ-preservation surgery following failed radiotherapy for laryngeal cancer. Evaluation, patient selection, functional outcome and survival. Curr Opin Otolaryngol Head Neck Surg 16:141–146PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Departamento de OtorrinolaringologíaHospital Universitario Central de AsturiasOviedoSpain
  2. 2.Instituto Universitario de Oncología (IUOPA), Universidad de OviedoOviedoSpain

Personalised recommendations