Studying the effects of mobile phone use on the auditory system and the central nervous system: a review of the literature and future directions

  • A. E. Kaprana
  • A. D. Karatzanis
  • E. P. Prokopakis
  • I. E. Panagiotaki
  • I. O. Vardiambasis
  • G. Adamidis
  • P. Christodoulou
  • G. A. Velegrakis
Review Article


The wide spread of mobile communication since the late 1980 s raises questions about the effects of electromagnetic fields (EMFs) on the human body. Most studies have focused on the non-thermal effects of electromagnetic radiation (EMR). Low-energy EMFs seem to cause structural and functional changes in the cell membrane of different cell types, leading to abnormal cell response. Such changes within the central nervous system (CNS) and auditory system, which directly receive EMR during mobile phone use, are of particular interest. Various studies suggest that EMR directly affects neurons by reducing the neuronal reactivity, increasing the neural membrane conductivity and prolonging their refractory period. Furthermore, although it has been suggested that EMR is related with increased incidence of specific tumors and can interact with known carcinogenic agents, no conclusive evidence exists supporting its role in carcinogenesis. Therefore, no safe conclusions can be drawn regarding the potential harmful effects of mobile phone use. Experiments are underway by our laboratory to investigate possible effects of mobile phone use on the auditory system and the CNS. These along with other studies are expected to further clarify whether mobile phone use truly presents a health hazard.


Mobile phones Electromagnetic fields Electromagnetic radiation Auditory system Central nervous system 



Independent Expert Group on Mobile Phones


International Council on Non-Ionizing Radiation Protection


United Nations Environmental Program


International Radiation Protection Activities


World Health Association


  1. 1.
    Steele R, Hanzo L (1999) Mobile communications, 2nd edn. New York, WileyGoogle Scholar
  2. 2.
    Pederson GF, Anderson JB (1999) RF and ELF exposure from cellular phone handsets: TDMA and CDMA systems. Radiat Prot Dosimetry 83:131Google Scholar
  3. 3.
    Adair ER, Cobb BL, Mylacraine KS, Kelleher SA (1999) Human exposure at two radiofrequencies (450 and 2450 MHz): similarities and differences in physiological response. Bioelectromagnetics 20:12CrossRefGoogle Scholar
  4. 4.
    ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys 74(4):494Google Scholar
  5. 5.
    ICNIRP (1998) Response to questions and comments on ICNIRP guidelines. Health Phys 75(4):438Google Scholar
  6. 6.
    Repacholi MH (1998) Low level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics 19:1PubMedCrossRefGoogle Scholar
  7. 7.
    IEGMP: Independent Expert Group on Mobile Phones (2000) Mobile phones and health. Chairman Professor Sir William StewartGoogle Scholar
  8. 8.
    Röösli M, Moser M, Baldinini Y, Meier M, Braun-Fahrländer C (2004) Symptoms of ill health ascribed to electromagnetic field exposure-a questionnaire survey. Int J Hyg Environ Health 207(2):141PubMedCrossRefGoogle Scholar
  9. 9.
    Michel G (2004) Symptom reporting: exploration of situational and individual predictors. Ph.D. thesis, University of Fribourg, SwitzerlandGoogle Scholar
  10. 10.
    Hillert L, Berglind N, Arnetz BB, Bellander T (2001) Prevalence of self-reported hypersensitivity to electric or magnetic fields in population-based questionnaire survey. Scand J Work Environ Res 28(1):33Google Scholar
  11. 11.
    Thomée S, Eklöf M, Gustafsson E, Nilsson R, Hagberg M (2007) Prevalence of perceived stress, symptoms of depression and sleep disturbances in relation to information and communication technology (ICT) use among young adults: an explorative prospective study. Comput Hum Behav 23(3):300–1321CrossRefGoogle Scholar
  12. 12.
    Hung CS, Anderson C, Horne JA, McEvoy P (2007) Mobile phone ‘talk-mode’ signal delays EEG-determined sleep onset. Neurosci Lett 421(1):82–86PubMedCrossRefGoogle Scholar
  13. 13.
    Koivisto M, Haarala C, Krause CM, Revonsuo A, Laine M, Hamalainen H (2001) GSM phone signal does not produce subjective symptoms. Bioelectromagnetics 22(3):212PubMedCrossRefGoogle Scholar
  14. 14.
    Dubreuil D, Jay T, Edeline JM (2002) Does head only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks? Behav Brain Res 129(1, 2):203–210PubMedCrossRefGoogle Scholar
  15. 15.
    Dubreuil D, Jay T, Edeline JM (2003) Head-only exposure to GSM-900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks. Behav Brain Res 145(1, 2):51–61PubMedCrossRefGoogle Scholar
  16. 16.
    Levallois P, Neutra R, Lee G, Hristova L (2002) Study of self reported hypersensitivity to electromagnetic fields in California. Environ Health Perspect 110(Suppl 4):619PubMedGoogle Scholar
  17. 17.
    Leitgeb N, Schröttner J (2003) Electrosensibility and electromagnetic hypersensitivity. Bioelectromagnetics 24(6):387PubMedCrossRefGoogle Scholar
  18. 18.
    Abdel-Rassoul G, Abou El-Fateh O, Abou Salem M, Michael A, Farahat F, El-Batanouny M, Salem E (2007) Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology 28(2):434–440PubMedCrossRefGoogle Scholar
  19. 19.
    IEGMP (2000) Advisory Group on Non-ionising Radiation (AGNIR) (2003 Health effects from radiofrequency electromagnetic fields: report of an independent. Advisory Group Of Non-ionising Radiation. Doc NRPB 14:1–77Google Scholar
  20. 20.
    Schroemaker MJ, Swerdlow AJ, Ahlbom A, Auvinen A et al (2005) Mobile phone use and risk of acoustic neuroma: results of the interphone case–control study in five North European countries. Br J Cancer 93(7):842–848CrossRefGoogle Scholar
  21. 21.
    Lönn S, Ahlbom A, Hall P, Feychting M (2004) Mobile phone use and risk of acoustic neuroma. Epidemiology 15:653–659PubMedCrossRefGoogle Scholar
  22. 22.
    Lennart H (2004) No association between mobile phone usage and development of acoustic neuroma. Evid Based Healthc 8:213–215CrossRefGoogle Scholar
  23. 23.
    Hardell L, Carlberg M, Hansson MK (2005) Case–control study on cellular and cordless telephones and the risk for acoustic neuroma or meningioma in patients diagnosed 2000–2003. Neuroepidemiology 25(3):120–128PubMedCrossRefGoogle Scholar
  24. 24.
    Christensen HC, Schuz J, Kosteljanetz M et al (2004) Cellular telephone use and risk of acoustic neuroma. Am J Epidemiol 159:277–283PubMedCrossRefGoogle Scholar
  25. 25.
    Johansen C, Boice JD, McLaughlin JK et al (2001) Cellular telephones and cancer: anation wide cohort study in Denmark. J Natl Cancer Inst 93:203–207PubMedCrossRefGoogle Scholar
  26. 26.
    Hepworth S, Schoemaker M, Muir K, Swerdlow A, Van Tongeren MJ, McKinney P (2006) Mobile phone use and risk of glioma in adults: case–control study. BMJ 332:883–887PubMedCrossRefGoogle Scholar
  27. 27.
    Schüz J, Böhler E, Berg G, Schlehofer B et al Cellular phones, cordless phones, and the risks of glioma and meningioma (Interphone Study Group, Germany). Am J Epidemiol 2006;63(6):512–520. Epub Jan 27. Comment by Morgan in: Am J Epidemiol 2006;164:294–295. Author reply 295Google Scholar
  28. 28.
    Lahkola A, Auvinen A, Raitanen J et al (2007) Mobile phone use and risk of glioma in 5 North European countries. Int J Cancer 120:1769–1775PubMedCrossRefGoogle Scholar
  29. 29.
    Auvinen A, Hietanen M, Luukkonen R, Koskela RS (2002) Brain tumors and salivary gland cancers among cellular telephone users. Epidemiology 13:356–359PubMedCrossRefGoogle Scholar
  30. 30.
    Stang A, Anastassiou G, Ahrens W, Bromen K, Bornfeld N, Jockel K-H (2001) The possible role of radiofrequency radiation in the development of uveal melanoma. Epidemiology 12:7–12PubMedCrossRefGoogle Scholar
  31. 31.
    Inskip PD, Tarone RE, Hatch EE, Wilcosky TC, Shapiro WR, Selker RG, Fine HA, Black PM, Loeffler JS, Linet MS (2001) Cellulartelephone use and brain tumors. N Engl J Med 344:79–86PubMedCrossRefGoogle Scholar
  32. 32.
    Brusick D, Albertini R, McRee D, Peterson D, Williams G, Hanawalt P, Preston J (1998) Genotoxicity of radiofrequency radiations. Environ Mol Mutagen 32:1PubMedCrossRefGoogle Scholar
  33. 33.
    Verschaeve L, Maes A (1998) Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutat Res 410:141PubMedCrossRefGoogle Scholar
  34. 34.
    Jokela K, Leszczynski D, Paile W, Salomaa S, Puranen L, Hyysalo P (1999) Radiation safety of handheld mobile phones and base stations. Stockholm, STUK, S161Google Scholar
  35. 35.
    Moulder JE, Erdreich LS, Malyapa RS, Merritt J, Pickard WF, Vijayalaxmi DZ (1999) Cell phones and cancer: what is the evidence for a connection? Radiat Res 151:513PubMedCrossRefGoogle Scholar
  36. 36.
    Royal Society of Canada Expert Panel Report (1999) A review of the potential health risks of radiofrequency fields from wireless telecommunication devices. An Expert Panel Report prepared at the request of the Royal Society of Canada for Health Canada. Ottawa, Royal Society of Canada, RSC.EPR, pp 99–101Google Scholar
  37. 37.
    Asanami S, Shimono K (1999) High body temperature induces micronuclei in mouse bone marrow. Mutat Res 390:79Google Scholar
  38. 38.
    Jorritsma JB, Konings AW (1984) The occurrence of DNA strand breaks after hyperthermic treatments of mammalian cells with and without radiation. Radiat Res 98:198PubMedCrossRefGoogle Scholar
  39. 39.
    Miura K, Morimoto K, Koizumi A (1986) Effects of temperature on chemically induced sister-chromatid exchange in human lymphocytes. Mutat Res 174:15PubMedCrossRefGoogle Scholar
  40. 40.
    Lai H, Singh NP (1995) Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 16:207PubMedCrossRefGoogle Scholar
  41. 41.
    Lai H, Singh NP (1996) Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 69:513PubMedCrossRefGoogle Scholar
  42. 42.
    McKelvey-Martin VJ, Green MHL, Schmezer P, Pool-Zobel BL, De Méo MP, Collins A (1993) The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res 288:47PubMedGoogle Scholar
  43. 43.
    Malyapa RS, Ahern EW, Straube WL, Moros EG, Pickard WF, Roti Roti JL (1997) Measurement of DNA damage following exposure to 2450 MHz electromagnetic radiation. Radiat Res 148:608PubMedCrossRefGoogle Scholar
  44. 44.
    Malyapa RS, Ahern EW, Straube WL, Moros EG, Pickard WF, Roti Roti JL (1997) Measurement of DNA damage following exposure to electromagnetic radiation in the cellular communications frequency band (835.62 and 847.74 MHz). Radiat Res 148:618PubMedCrossRefGoogle Scholar
  45. 45.
    Szmigielski S, Szudzinski A, Pietraszek A, Bielec M, Wrembel JK (1982) Accelerated development of spontaneous and benzopyrene-induced skin cancer in mice exposed to 2450-MHz microwave radiation. Bioelectromagnetics 3:179PubMedCrossRefGoogle Scholar
  46. 46.
    Szudzinski A, Pietraszek A, Janiak M, Wrembel J, Kalczek M, Szmigielski S (1982) Acceleration of the development of benzopyrene-induced skin cancer in mice by microwave radiation. Arch Dermatol Res 274:303PubMedCrossRefGoogle Scholar
  47. 47.
    Szmigielski S, Bielec M, Lipski S, Sokolska G (1988) Immunologic and cancer-related aspects of exposure to low-level microwave and radiofrequency fields. In: Marino AA (ed) Modern bioelectricity. New York, Marcel Dekker, p 861Google Scholar
  48. 48.
    Maes A, Collier M, Van Gorp U, Vandoninck S, Verschaeve L (1997) Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in combination with mitomycin C. Mutat Res 393:151PubMedGoogle Scholar
  49. 49.
    Wu RY, Chiang H, Shao BJ, Li NG, Fu YD (1994) Effects of 2.45 GHz microwave radiation and phorbol ester 12-O-tetradecanoylphorbol-13-acetate on dimethylhydrazine-induced colon cancer in mice. Bioelectromagnetics 15:531PubMedCrossRefGoogle Scholar
  50. 50.
    Imaida K, Taki M, Yamaguchi T, Ito T, Watanabe S, Wake K, Aimoto A, Kamimura Y, Ito N, Shirai T (1998) Lack of promoting effects of the electromagnetic near-field used for cellular phones (929.2 MHz) on rat liver carcinogenesis in a medium-term liver bioassay. Carcinogenesis 19:311PubMedCrossRefGoogle Scholar
  51. 51.
    Imaida K, Taki M, Watanabe S-i, Kamimura Y, Ito T, Yamaguchi T, Ito N, Shirai T (1998) The 1.5 GHz electromagnetic near-field used for cellular phones does not promote rat liver carcinogenesis in a mediumterm liver bioassay. Jpn J Cancer Res 89:995PubMedGoogle Scholar
  52. 52.
    Adey WR, Byus CV, Cain CD, Higgins RJ, Jones RA, Kean CJ, Kuster N, MacMurray A, Stagg RB, Zimmerman G, Phillips JL, Haggren W (1999) Spontaneous and nitrosourea-induced primary tumours in Fischer 344 rats chronically exposed to 836 MHz modulated microwaves. Radiat Res 152:293PubMedCrossRefGoogle Scholar
  53. 53.
    Malyapa RS, Ahern EW, Bi C, Straube WL, LaRegina M, Pickard WF, Roti Roti JL (1998) DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiat Res 149:637PubMedCrossRefGoogle Scholar
  54. 54.
    Oysu C, Topak M, Celik O, Yilmaz HB, Sahin AA (2005) Effects of the acute exposure to the electromagnetic field of mobile phones on human auditory brainstem responses. Eur Arch Otorhinolaryngo 262(10):839–843CrossRefGoogle Scholar
  55. 55.
    Ozturan O, Erdem T, Miman MC, Kalcioglu MT, Oncel S (2002) Effects of the electromagnetic field of mobile telephones on hearing. Acta Otolaryngol 122(3):289PubMedCrossRefGoogle Scholar
  56. 56.
    Noritoshi A, Hiroyuki E, Shingo O, Kaoru Y, Yoshitsugu K, Yoshikazu U (2003) Thirty minutes mobile phone use has no short-term adverse effects on central auditory pathways. Clin Neurophysiol 114(8):1390–1394CrossRefGoogle Scholar
  57. 57.
    Counter SA (1993) Neurobiological effects of extensive transcranial electromagnetic stimulation in an animal model. Electroencephalogr Clin Neurophysiol Evoked Potentials Sect 89(5):341–348CrossRefGoogle Scholar
  58. 58.
    Kellenyi L, Thuroczy G, Faludy B, Lenard L (1999) Effects of mobile GSM radiotelephone exposure on the auditory brainstem response (ABR). Neurobiology 7:79–81PubMedGoogle Scholar
  59. 59.
    Garcia Callejo FJ, Garcia Callejo F, Pena Santamaria J, Alonso Castaneira I, Sebastian Gil E, Marco Algarra J (2005) Hearing level and intensive use of mobile phones. Acta Otorrinolaringol Esp 56(5):187–191PubMedGoogle Scholar
  60. 60.
    Kerekhanjanarong V, Supiyaphun P, Naratricoon J, Laungpitackchumpon P (2005) The effect of mobile phone to audiologic system. J Med Assoc Thai 88(Suppl 4):S231–S234PubMedGoogle Scholar
  61. 61.
    Oktay MF, Dasdag S (2006) Effects of intensive and moderate cellular phone use on hearing function. Electromagn Biol Med 25(1):13–21PubMedCrossRefGoogle Scholar
  62. 62.
    Davidson HC, Lutman ME (2007) Survey of mobile phone use and their chronic effects on the hearing of a student population. Int J Audiol 46(3):113–118PubMedCrossRefGoogle Scholar
  63. 63.
    Pau HW, Sievert U, Eggert S, Wild W (2005) Can electromagnetic field emitted by mobile phones stimulate the vestibular organ? Otolaryngol Head Neck Surg 132(1):43–49PubMedCrossRefGoogle Scholar
  64. 64.
    Sievert U, Eggert S, Pau HW (2005) Can mobile phone emissions affect auditory functions of cochlea or brain stem? Otolaryngol Head Neck Surg 132:451–455PubMedCrossRefGoogle Scholar
  65. 65.
    Van Leeuewen GM, Lagendijk JJ, Van Leersum BJ et al (1999) Calculation of change in brain temperatures due to exposure to a mobile phone. Phys Med Biol 44:2367–2379CrossRefGoogle Scholar
  66. 66.
    Mausset-Bonnefont AL, Hirbec H, Bonnefont X, Privat A, Vignon J, de Sèze R (2004) Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol Dis 17(3):445–454PubMedCrossRefGoogle Scholar
  67. 67.
    Brillaud E, Piotrowski A, de Seze R (2007) Effect of an acute 900 MHz GSM exposure on glia in the rat brain: a time-dependent study. Toxicology 238(1):23–33PubMedCrossRefGoogle Scholar
  68. 68.
    Wang Q, Cao ZJ, Bai XT (2005) Effect of 900 MHz electromagnetic fields on the expression of GABA receptor of cerebral cortical neurons in postnatal rats. Wei Sheng Yan Jiu 34(5):546–548PubMedGoogle Scholar
  69. 69.
    Xu S, Ning W, Xu Z, Zhou S, Chiang H, Luo J (2006) Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett 398:253–257PubMedCrossRefGoogle Scholar
  70. 70.
    Lopez-Martin E, Relova-Quinteiro JL, Gallego-Gomez R, Peleteiro-Fernandez M, Jorge-Barreiro FJ, Ares-Pena FJ (2006) GSM radiation triggers seizures and increases cerebral c-Fos positivity in rats pretreated with subconvulsive doses of picrotoxin. Neurosci Lett 398:139–144PubMedCrossRefGoogle Scholar
  71. 71.
    Kolomytkin O, Yurinska M, Zharikov S, Kuznetsov V, Zharikova A (1994) Response of brain receptor systems to microwave energy exposure. In: Frey AH (ed) On the nature of electromagnetic field interactions with biological systems. R.G. Landes, Austin, pp 195–206Google Scholar
  72. 72.
    Moustafa Yasser M., Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM (2001) Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal 26(4):605–608PubMedCrossRefGoogle Scholar
  73. 73.
    Pacini S, Ruggiero M, Sardi I, Aterini S, Gulisano F, Gulisano M (2002) Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation and morphology of human skin fibroblasts. Oncol Res 13:19–24PubMedGoogle Scholar
  74. 74.
    Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13PubMedCrossRefGoogle Scholar
  75. 75.
    French PW, Penny R, Laurence JA, McKenzie DR (2001) Mobile phones, heat shock proteins and cancer. Differentiation 67:93–97PubMedCrossRefGoogle Scholar
  76. 76.
    Leszczynski D, Joenvaara S, Reivinen J, Kuokka R (2002) Non thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: modecular mechanism for cancer and blood–brain barrier-related effects. Differentiation 70:120–129PubMedCrossRefGoogle Scholar
  77. 77.
    Koroshetz WJ, Bonventre JV (1994) Heat shock response in the central nervous system. Experientia 50:1085–1091PubMedCrossRefGoogle Scholar
  78. 78.
    Arber SL, Lin JC (1984) Microwave enhancement of membrane conductance: effect of EDTA, caffeine and tetracaine. Physiol Chem Phys Med NMR 16:469PubMedGoogle Scholar
  79. 79.
    Arber SL, Lin JC (1985) Microwave induced changes in nerve cells: effects of modulation and temperature. Bioelectromagnetics 6:257PubMedCrossRefGoogle Scholar
  80. 80.
    McRee DI, Wachtel H (1980) The effects of microwave radiation on the vitality of isolated frog sciatic nerves. Radiat Res 82:536PubMedCrossRefGoogle Scholar
  81. 81.
    Seaman RL, Wachtel H (1978) Slow and rapid responses to CW and pulsed microwave radiation by individual Aplysia pacemakers. J Microwave Power 13:77Google Scholar
  82. 82.
    Wachtel H, Seaman R, Joines W (1975) Effects of low-intensity microwaves on isolated neurons. Ann N Y Acad Sci 247:46PubMedCrossRefGoogle Scholar
  83. 83.
    Gandhi CR, Ross DH (1989) Microwave induced stimulation of 32P incorporation into phosphoinotides of rat brain synaptosomes. Radiat Environ Biophys 28:223PubMedCrossRefGoogle Scholar
  84. 84.
    Ferreri F, Curcio G, Pasqualetti P, De Gennaro L, Fini R, Rossini PM (2006) Mobile phone emissions and human brain excitability. Ann Neurol 60:188–196PubMedCrossRefGoogle Scholar
  85. 85.
    Krause CM, Bjornberg CH, Pesonen M, Hulten A, Liesivuori T, Koivisto M, Revonsuo A, Laine M, Hamalainen H (2006) Mobile phone effects on children’s event-related oscillatory EEG during an auditory memory task. Int J Radiat Biol 82(6):443–450PubMedCrossRefGoogle Scholar
  86. 86.
    Papageorgiou CC, Nanou ED, Tsiafakis VG, Kapareliotis E, Kontoangelos KA, Capsalis CN, Rabavilas AD, Soldatos CR (2006) Acute mobile phone effects on pre-attentive operation. Neurosci Lett 397:99–103PubMedCrossRefGoogle Scholar
  87. 87.
    Yuasa K, Arai N, Okabe S, Tarusawa Y, Nojima T, Hanajima R, Terao Y, Ugawa Y (2006) Effects of thirty minutes mobile phone use on the human sensory cortex. Clin Neurophysiol 117:900–905PubMedCrossRefGoogle Scholar
  88. 88.
    Krause CM, Pesonen M, Haarala Bjornberg C, Hamalainen H (2007) Effects of pulsed and continuous wave 902 MHz mobile phone exposure on brain oscillatory activity during cognitive processing. Bioelectromagnetics 28:296–308PubMedCrossRefGoogle Scholar
  89. 89.
    Vecchio F, Babiloni C, Ferreri F, Curcio G, Fini R, Del Percio C, Rossini PM (2007) Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms. Eur J Neurosci 25(6):1908–1913PubMedCrossRefGoogle Scholar
  90. 90.
    Hung CS, Anderson C, Horne JA, McEvoy P (2007) Mobile phone ‘talk-mode’ signal delays EEG determined sleep onset. Neurosci Lett 421(1):82–86PubMedCrossRefGoogle Scholar
  91. 91.
    Muscat JE, Hinsvark M, Malkin M et al (2006) Mobile telephones and rates of brain cancer. Neuroepidemiology 27(1):55–56PubMedCrossRefGoogle Scholar
  92. 92.
    Muscat JE, Maklin MG, Shire RE (2002) Handheld cellular telephones and risk of acoustic neuroma. Neurology 58:1304–1306PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. E. Kaprana
    • 1
  • A. D. Karatzanis
    • 1
  • E. P. Prokopakis
    • 1
  • I. E. Panagiotaki
    • 1
  • I. O. Vardiambasis
    • 2
  • G. Adamidis
    • 2
  • P. Christodoulou
    • 1
  • G. A. Velegrakis
    • 1
  1. 1.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity of Crete School of Medicine, University Hospital of CreteHeraklionGreece
  2. 2.Electronics Department, Microwave Communications and Electromagnetic Applications LabChania Branch, Technological Educational Institute of CreteHeraklionGreece

Personalised recommendations