Advertisement

Archives of Gynecology and Obstetrics

, Volume 300, Issue 6, pp 1741–1750 | Cite as

Endometrial expression of receptivity markers subject to ovulation induction agents

  • Alexander Freis
  • Ariane Germeyer
  • Julia Jauckus
  • Edison Capp
  • Thomas Strowitzki
  • Markus Zorn
  • Amanda Machado WeberEmail author
Gynecologic Endocrinology and Reproductive Medicine
  • 70 Downloads

Abstract

Purpose

Implantation rates differ according to ovulation induction agents in ART. This study investigates the different local endometrial effects of LH- versus hCG-induced ovulation.

Methods

Endometrial stromal cells from healthy patients were cultured with hCG or LH in different concentrations, supplemented with 250 ng/mL hCG and progesterone after 2 and 5 days. In addition after decidualization induction, cells were treated with hCG (50 or 250 ng/mL) or LH (10 or 50 ng/mL) for 3 days. Receptivity markers expression was evaluated by real-time quantitative PCR on day 3 and 6.

Results

On day 3, non-decidualized cells treated with LH showed an increased expression of IGFBP1, IL-8 and CXCL12 compared to hCG. The expression pattern changed on day 6, where cells treated with hCG showed higher expression of implantation markers compared to LH-treated cells. Furthermore, on day 3, decidualized cells treated with hCG250 showed an increased IL8 and CXCL12 expression compared to LH10.

Conclusions

LH seems to modulate the local endometrial expression of receptivity markers earlier compared to hCG; however, the effect is not sustained over time in cells without prior decidualization. Though, in decidualized cells, pattern changed and an earlier positive effect of hCG was shown on IL-8 and CXCL12.

Keywords

Endometrium implantation hCG LH IGFBP1 IL8 CXCL12 

Abbreviations

IGFBP1

Insulin-like growth factor binding protein 1

IL8

Interleukin 8

CXCL1

CXC-Motif-Chemokin ligand 1

CXCL12

CXC-Motif-Chemokin ligand 12, also stromal cell-derived factor 1 (SDF-1) or pre-B cell growth-stimulating factor (PBSF)

LH

Luteinizing hormone

hCG

Human chorionic gonadotropin

Notes

Acknowledgements

We acknowledge financial support by Ruprecht-Karls-Universität Heidelberg for open-access publishing.

Author Contributions

Conceptualization, AF, AG, AMW; and JJ; methodology, AF, AG, JJ, AMW; formal analysis, AF, AG, EC, AMW; investigation, JJ, AMW, MZ, AF; resources, AG, AF, TS; data curation, JJ, AMW; writing—original draft preparation, AF, AMW; writing—review and editing, AF, AG, AMW, EC; visualization, AF, AMW; supervision, AG; project administration, AG; funding acquisition, AG, AF.

Funding

This research was funded by Dres. Majic/Majic-Schlez-Stiftung, University of Heidelberg.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest regarding this paper.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All patients provided written consent for the use of their tissue samples. The study was approved by the Ethics Committee of Ruprecht Karls University Heidelberg (S239/2005).

References

  1. 1.
    Bourdiec A, Shao R, Rao CV, Akoum A (2012) Human chorionic gonadotropin triggers angiogenesis via the modulation of endometrial stromal cell responsiveness to interleukin 1: a new possible mechanism underlying embryo implantation. Biol Reprod 87(3):66.  https://doi.org/10.1095/biolreprod.112.100370 CrossRefPubMedGoogle Scholar
  2. 2.
    Horcajadas JA, Minguez P, Dopazo J, Esteban FJ, Dominguez F, Giudice LC, Pellicer A, Simon C (2008) Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J Clin Endocrinol Metab 93(11):4500–4510.  https://doi.org/10.1210/jc.2008-0588 CrossRefPubMedGoogle Scholar
  3. 3.
    Castro-Rendon WA, Castro-Alvarez JF, Guzman-Martinez C, Bueno-Sanchez JC (2006) Blastocyst-endometrium interaction: intertwining a cytokine network. Braz J Med Biol Res 39(11):1373–1385CrossRefGoogle Scholar
  4. 4.
    Casarini L, Santi D, Simoni M, Poti F (2018) ‘Spare’ luteinizing hormone receptors: facts and fiction. Trends Endocrinol Metab 29(4):208–217.  https://doi.org/10.1016/j.tem.2018.01.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Theofanakis C, Drakakis P, Besharat A, Loutradis D (2017) Human chorionic gonadotropin: the pregnancy hormone and more. Int J Mol Sci.  https://doi.org/10.3390/ijms18051059 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nwabuobi C, Arlier S, Schatz F, Guzeloglu-Kayisli O, Lockwood CJ, Kayisli UA (2017) hCG: biological functions and clinical applications. Int J Mol Sci.  https://doi.org/10.3390/ijms18102037 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Horcajadas JA, Riesewijk A, Polman J, van Os R, Pellicer A, Mosselman S, Simon C (2005) Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles. Mol Hum Reprod 11(3):195–205.  https://doi.org/10.1093/molehr/gah150 CrossRefPubMedGoogle Scholar
  8. 8.
    Zarei A, Parsanezhad ME, Younesi M, Alborzi S, Zolghadri J, Samsami A, Amooee S, Aramesh S (2014) Intrauterine administration of recombinant human chorionic gonadotropin before embryo transfer on outcome of in vitro fertilization/intracytoplasmic sperm injection: a randomized clinical trial. Iran J Reprod Med 12(1):1–6PubMedPubMedCentralGoogle Scholar
  9. 9.
    Zygmunt M, Herr F, Keller-Schoenwetter S, Kunzi-Rapp K, Munstedt K, Rao CV, Lang U, Preissner KT (2002) Characterization of human chorionic gonadotropin as a novel angiogenic factor. J Clin Endocrinol Metab 87(11):5290–5296.  https://doi.org/10.1210/jc.2002-020642 CrossRefPubMedGoogle Scholar
  10. 10.
    Berndt S, Blacher S, Perrier d’Hauterive S, Thiry M, Tsampalas M, Cruz A, Pequeux C, Lorquet S, Munaut C, Noel A, Foidart JM (2009) Chorionic gonadotropin stimulation of angiogenesis and pericyte recruitment. J Clin Endocrinol Metab 94(11):4567–4574.  https://doi.org/10.1210/jc.2009-0443 CrossRefPubMedGoogle Scholar
  11. 11.
    Aflatoonian A, Yousefnejad F, Eftekhar M, Mohammadian F (2012) Efficacy of low-dose hCG in late follicular phase in controlled ovarian stimulation using GnRH agonist protocol. Arch Gynecol Obstet 286(3):771–775.  https://doi.org/10.1007/s00404-012-2337-z CrossRefPubMedGoogle Scholar
  12. 12.
    Berkkanoglu M, Isikoglu M, Aydin D, Ozgur K (2007) Clinical effects of ovulation induction with recombinant follicle-stimulating hormone supplemented with recombinant luteinizing hormone or low-dose recombinant human chorionic gonadotropin in the midfollicular phase in microdose cycles in poor responders. Fertil Steril 88(3):665–669.  https://doi.org/10.1016/j.fertnstert.2006.11.150 CrossRefPubMedGoogle Scholar
  13. 13.
    Hershko Klement A, Shulman A (2017) hCG triggering in ART: an evolutionary concept. Int J Mol Sci.  https://doi.org/10.3390/ijms18051075 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sahin S, Ozay A, Ergin E, Turkgeldi L, Kurum E, Ozornek H (2015) The risk of ectopic pregnancy following GnRH agonist triggering compared with hCG triggering in GnRH antagonist IVF cycles. Arch Gynecol Obstet 291(1):185–191.  https://doi.org/10.1007/s00404-014-3399-x CrossRefPubMedGoogle Scholar
  15. 15.
    Atkinson P, Koch J, Susic D, Ledger WL (2014) GnRH agonist triggers and their use in assisted reproductive technology: the past, the present and the future. Womens Health 10(3):267–276.  https://doi.org/10.2217/whe.14.14 CrossRefGoogle Scholar
  16. 16.
    Craciunas L, Tsampras N, Raine-Fenning N, Coomarasamy A (2018) Intrauterine administration of human chorionic gonadotropin (hCG) for subfertile women undergoing assisted reproduction. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd011537.pub3 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Maslova MA, Smol’nikova VY, Savilova AM, Burmenskaya OV, Bystritskii AA, Tabolova VK, Korneeva IE, Demura TA, Donnikov AE (2015) Profiles of mRNA expression for genes involved in implantation, early and middle phases of secretion stage in human endometrium. Bull Exp Biol Med 158(6):781–784.  https://doi.org/10.1007/s10517-015-2861-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, Osteen K, Taylor RN, Lessey BA, Giudice LC (2002) Global gene profiling in human endometrium during the window of implantation. Endocrinology 143(6):2119–2138.  https://doi.org/10.1210/endo.143.6.8885 CrossRefPubMedGoogle Scholar
  19. 19.
    Riesewijk A, Martin J, van Os R, Horcajadas JA, Polman J, Pellicer A, Mosselman S, Simon C (2003) Gene expression profiling of human endometrial receptivity on days LH + 2 versus LH + 7 by microarray technology. Mol Hum Reprod 9(5):253–264CrossRefGoogle Scholar
  20. 20.
    Rinaldi L, Lisi F, Selman H (2014) Mild/minimal stimulation protocol for ovarian stimulation of patients at high risk of developing ovarian hyperstimulation syndrome. J Endocrinol Invest 37(1):65–70.  https://doi.org/10.1007/s40618-013-0021-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Choi J, Smitz J (2014) Luteinizing hormone and human chorionic gonadotropin: origins of difference. Mol Cell Endocrinol 383(1–2):203–213.  https://doi.org/10.1016/j.mce.2013.12.009 CrossRefPubMedGoogle Scholar
  22. 22.
    Wirleitner B, Schuff M, Vanderzwalmen P, Stecher A, Okhowat J, Hradecky L, Kohoutek T, Kralickova M, Spitzer D, Zech NH (2015) Intrauterine administration of human chorionic gonadotropin does not improve pregnancy and life birth rates independently of blastocyst quality: a randomised prospective study. Reprod Biol Endocrinol 13:70.  https://doi.org/10.1186/s12958-015-0069-1 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Eftekhar M, Mojtahedi MF, Miraj S, Omid M (2017) Final follicular maturation by administration of GnRH agonist plus HCG versus HCG in normal responders in ART cycles: an RCT. Int J Reprod Biomed 15(7):429–434CrossRefGoogle Scholar
  24. 24.
    Ganeff C, Chatel G, Munaut C, Frankenne F, Foidart JM, Winkler R (2009) The IGF system in in vitro human decidualization. Mol Hum Reprod 15(1):27–38.  https://doi.org/10.1093/molehr/gan073 CrossRefPubMedGoogle Scholar
  25. 25.
    Germeyer A, Jauckus J, Zorn M, Toth B, Capp E, Strowitzki T (2011) Metformin modulates IL-8, IL-1beta, ICAM and IGFBP-1 expression in human endometrial stromal cells. Reprod Biomed Online 22(4):327–334.  https://doi.org/10.1016/j.rbmo.2010.11.006 CrossRefPubMedGoogle Scholar
  26. 26.
    Karpovich N, Klemmt P, Hwang JH, McVeigh JE, Heath JK, Barlow DH, Mardon HJ (2005) The production of interleukin-11 and decidualization are compromised in endometrial stromal cells derived from patients with infertility. J Clin Endocrinol Metab 90(3):1607–1612.  https://doi.org/10.1210/jc.2004-0868 CrossRefPubMedGoogle Scholar
  27. 27.
    Lathi RB, Hess AP, Tulac S, Nayak NR, Conti M, Giudice LC (2005) Dose-dependent insulin regulation of insulin-like growth factor binding protein-1 in human endometrial stromal cells is mediated by distinct signaling pathways. J Clin Endocrinol Metab 90(3):1599–1606.  https://doi.org/10.1210/jc.2004-1676 CrossRefPubMedGoogle Scholar
  28. 28.
    Damewood MD, Shen W, Zacur HA, Schlaff WD, Rock JA, Wallach EE (1989) Disappearance of exogenously administered human chorionic gonadotropin. Fertil Steril 52(3):398–400CrossRefGoogle Scholar
  29. 29.
    Humaidan P, Van Vaerenbergh I, Bourgain C, Alsbjerg B, Blockeel C, Schuit F, Van Lommel L, Devroey P, Fatemi H (2012) Endometrial gene expression in the early luteal phase is impacted by mode of triggering final oocyte maturation in recFSH stimulated and GnRH antagonist co-treated IVF cycles. Hum Reprod 27(11):3259–3272.  https://doi.org/10.1093/humrep/des279 CrossRefPubMedGoogle Scholar
  30. 30.
    Licht P, von Wolff M, Berkholz A, Wildt L (2003) Evidence for cycle-dependent expression of full-length human chorionic gonadotropin/luteinizing hormone receptor mRNA in human endometrium and decidua. Fertil Steril 79(Suppl 1):718–723CrossRefGoogle Scholar
  31. 31.
    Dekel N, Gnainsky Y, Granot I, Mor G (2010) Inflammation and implantation. Am J Reprod Immunol 63(1):17–21.  https://doi.org/10.1111/j.1600-0897.2009.00792.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gnainsky Y, Granot I, Aldo PB, Barash A, Or Y, Schechtman E, Mor G, Dekel N (2010) Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil Steril 94(6):2030–2036.  https://doi.org/10.1016/j.fertnstert.2010.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Han VK, Bassett N, Walton J, Challis JR (1996) The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface. J Clin Endocrinol Metab 81(7):2680–2693.  https://doi.org/10.1210/jcem.81.7.8675597 CrossRefPubMedGoogle Scholar
  34. 34.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452.  https://doi.org/10.1093/nar/gku1003 CrossRefPubMedGoogle Scholar
  35. 35.
    Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368.  https://doi.org/10.1093/nar/gkw937 CrossRefGoogle Scholar
  36. 36.
    Zhang Q, Zhang PW, Cai YD (2016) The use of protein–protein interactions for the analysis of the associations between PM2.5 and some diseases. Biomed Res Int 2016:4895476.  https://doi.org/10.1155/2016/4895476 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Teh WT, McBain J, Rogers P (2016) What is the contribution of embryo-endometrial asynchrony to implantation failure? J Assist Reprod Genet 33(11):1419–1430.  https://doi.org/10.1007/s10815-016-0773-6 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kol S, Humaidan P (2013) GnRH agonist triggering: recent developments. Reprod Biomed Online 26(3):226–230.  https://doi.org/10.1016/j.rbmo.2012.11.002 CrossRefPubMedGoogle Scholar
  39. 39.
    Casarini L, Lispi M, Longobardi S, Milosa F, La Marca A, Tagliasacchi D, Pignatti E, Simoni M (2012) LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE 7(10):e46682.  https://doi.org/10.1371/journal.pone.0046682 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mostajeran F, Godazandeh F, Ahmadi SM, Movahedi M, Jabalamelian SA (2017) Effect of intrauterine injection of human chorionic gonadotropin before embryo transfer on pregnancy rate: a prospective randomized study. J Res Med Sci 22:6.  https://doi.org/10.4103/1735-1995.199096 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Craciunas L, Tsampras N, Coomarasamy A, Raine-Fenning N (2016) Intrauterine administration of human chorionic gonadotropin (hCG) for subfertile women undergoing assisted reproduction. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd011537.pub2 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Youssef MA, Van der Veen F, Al-Inany HG, Mochtar MH, Griesinger G, Nagi Mohesen M, Aboulfoutouh I, van Wely M (2014) Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist-assisted reproductive technology. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd008046.pub4 CrossRefPubMedGoogle Scholar
  43. 43.
    Satyaswaroop PG, Bressler RS, de la Pena MM, Gurpide E (1979) Isolation and culture of human endometrial glands. J Clin Endocrinol Metab 48(4):639–641.  https://doi.org/10.1210/jcem-48-4-639 CrossRefPubMedGoogle Scholar
  44. 44.
    Ujvari D, Jakson I, Babayeva S, Salamon D, Rethi B, Gidlof S, Hirschberg AL (2017) Dysregulation of in vitro decidualization of human endometrial stromal cells by insulin via transcriptional inhibition of forkhead box protein O1. PLoS ONE 12(1):e0171004.  https://doi.org/10.1371/journal.pone.0171004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Gynaecological Endocrinology and Fertility DisordersUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Department of Obstetrics and Gynecology, Medicine SchoolUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Central LaboratoryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations