Benign uterine mass—discrimination from leiomyosarcoma by a preoperative risk score: a multicenter cohort study

  • Günter Köhler
  • Marcus VollmerEmail author
  • Neetika Nath
  • Philipp-Andreas Hessler
  • Katarina Dennis
  • Angela Lehr
  • Martina Köller
  • Christine Riechmann
  • Helena Bralo
  • Dominika Trojnarska
  • Hanka Lehnhoff
  • Johann Krichbaum
  • Manfred Krichbaum
  • Katja Evert
  • Matthias Evert
  • Marek Zygmunt
  • Lars Kaderali
Gynecologic Oncology



Discrimination of uterine leiomyosarcoma (LMS) and leiomyoma (LM) prior to surgery by basic preoperative characteristics and development of a preoperative leiomyosarcoma score.


A predominantly prospective cohort of 826 patients with LM from a clinical institution and an outpatient center was included in the study. Further a predominantly retrospective cohort of 293 patients with LMS was included from the counseling database of the German Clinical Center of Excellence for Genital Sarcoma and Mixed Tumors (DKSM, University Medicine Greifswald, Germany). We analyzed and compared anamnestic, epidemiological and clinical findings between both cohorts. Tenfold cross-validated logistic regression and random forest was performed on the 80% training set. The preoperative LMS score (pLMS) was developed based on logistic regression and independently evaluated by analyzing the area under the receiver operating characteristic curve (AUC) with the 20% test set.


In the LMS cohort, 63.1% had initially surgery for presumed LM and only 39.6% of endometrial biopsies revealed LMS. Key features for LMS discrimination were found to be bleeding symptoms: intermenstrual bleeding [RRc = 2.71, CI = (1.90–3.49), p < 0.001], hypermenorrhea [RRc = 0.28, CI = (0.15–0.50), p < 0.001], dysmenorrhea [RRc = 0.22, CI = (0.10–0.51), p < 0.001], postmenstrual bleeding [RRc = 2.08, CI = (1.30–2.75), p < 0.001], suspicious sonography [RRc = 1.21, CI = (1.19–1.22), p < 0.001] and the tumor diameter (each centimeter difference: β = 0.24, SD = 0.04, p < 0.001). pLMS achieved a mean cross-validated AUC of 0.969 (SD = 0.019) in the training set and an AUC of 0.968 in the test set.


The presented score is based on basic clinical characteristics and allows the prediction of LMS prior to a planned surgery of a uterine mass. In case pLMS is between − 3 and + 1, we suggest subsequent diagnostics, such as endometrial biopsy, color Doppler sonography, LDH measurement, MRI and transcervical biopsy.


Leiomyoma Leiomyosarcoma Malignancy Discrimination Leiomyosarcoma score Logistic regression 


Author contributions

GK contributed to project development, data collection, data analysis and interpretation and manuscript writing. P-AH, KD, AL, MK, CR, HB, DT, HL, JK, MK, KE, ME and MZ helped in project development, data collection, manuscript editing. MV, NN and LK contributed to data analysis and interpretation, manuscript writing/editing.


This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the local institutional research committee of the University Medicine Greifswald (Identifier: BB 034/19) and with the 1964 Helsinki Declaration and its later amendments.

Informed consent

All patients included in this study gave written consent to data collection and the use of personal records for research.

Supplementary material

404_2019_5344_MOESM1_ESM.docx (470 kb)
Supplementary material 1 (DOCX 469 kb)


  1. 1.
    Khan AT, Shehmar M, Gupta JK (2014) Uterine fibroids: current perspectives. Int J Womens Health 6:95–114CrossRefGoogle Scholar
  2. 2.
    Halaska MJ, Haidopoulos D, Guyon F, Morice P, Zapardiel I, Kesic V (2017) European society of gynecological oncology statement on fibroid and uterine morcellation. Int J Gynecol Cancer 27:189–192CrossRefGoogle Scholar
  3. 3.
    Skorstad M, Kent A, Lieng M (2016) Uterine leiomyosarcoma—incidence, treatment, and the impact of morcellation. A nationwide cohort study. Acta Obstet Gynecol Scand 95:984–990CrossRefGoogle Scholar
  4. 4.
    Nugent W, Engelke G, Reicke S, Söder R, Hennefründ J, Hasskamp T et al (2015) Laparoscopic supracervical hysterectomy or myomectomy with power morcellation: risk of uterine leiomyosarcomas. A retrospective trial including 35.161 women in Germany. J Minim Invasive Gynecol 22:S2–S3CrossRefGoogle Scholar
  5. 5.
    Bojahr B, De Wilde RL, Tchartchian G (2015) Malignancy rate of 10,731 uteri morcellated during laparoscopic supracervical hysterectomy (LASH). Arch Gynecol Obstet 292:665–672CrossRefGoogle Scholar
  6. 6.
    Brölmann H, Tanos V, Grimbizis G, Ind T, Philips K, van den Bosch T et al (2015) Options on fibroid morcellation: a literature review. Gynecol Surg 12:3–15CrossRefGoogle Scholar
  7. 7.
    Pritts EA, Vanness DJ, Berek JS, Parker W, Feinberg R, Feinberg J et al (2015) The prevalence of occult leiomyosarcoma at surgery for presumed uterine fibroids: a meta-analysis. Gynecol Surg 12:165–177CrossRefGoogle Scholar
  8. 8.
    Brohl AS, Li L, Andikyan V, Obican SG, Cioffi A, Hao K et al (2015) Age-stratified risk of unexpected uterine sarcoma following surgery for presumed benign leiomyoma. Oncologist 20:433–439CrossRefGoogle Scholar
  9. 9.
    George S, Barysauskas C, Serrano C, Oduyebo T, Rauh-Hain JA, Del Carmen MG et al (2014) Retrospective cohort study evaluating the impact of intraperitoneal morcellation on outcomes of localized uterine leiomyosarcoma. Cancer 120:3154–3158CrossRefGoogle Scholar
  10. 10.
    Park JY, Park SK, Kim DY, Kim JH, Kim YM, Kim YT et al (2011) The impact of tumor morcellation during surgery on the prognosis of patients with apparently early uterine leiomyosarcoma. Gynecol Oncol 122:255–259CrossRefGoogle Scholar
  11. 11.
    Perri T, Korach J, Sadetzki S, Oberman B, Fridman E, Ben-Baruch G (2009) Uterine leiomyosarcoma: does the primary surgical procedure matter? Int J Gynecol Cancer 19:257–260CrossRefGoogle Scholar
  12. 12.
    Raspagliesi F, Maltese G, Bogani G, Fuca G, Lepori S, De Iaco P et al (2017) Morcellation worsens survival outcomes in patients with undiagnosed uterine leiomyosarcomas: a retrospective MITO group study. Gynecol Oncol 144:90–95CrossRefGoogle Scholar
  13. 13.
    Nagai T, Takai Y, Akahori T, Ishida H, Hanaoka T, Uotani T et al (2015) Highly improved accuracy of the revised PREoperative sarcoma score (rPRESS) in the decision of performing surgery for patients presenting with a uterine mass. Springerplus 4:520CrossRefGoogle Scholar
  14. 14.
    Yildirim Y, Inal MM, Sanci M, Yildirim YK, Mit T, Polat M et al (2005) Development of uterine sarcoma after tamoxifen treatment for breast cancer: report of four cases. Int J Gynecol Cancer 15:1239–1242CrossRefGoogle Scholar
  15. 15.
    Sizzi O, Manganarro L, Rosetti A, Saldari M, Florio G, Loddo A et al (2018) Assessing risk of laparoscopic morcellation of occult uterine sarcomas during hysterectomy and myomectomy: literature review and the ISGE recommendations. Eur J Obstet Gynecol Reprod Biol 220:30–38CrossRefGoogle Scholar
  16. 16.
    Mittal KR, Chen F, Wei JJ, Rijhvani K, Kurvathi R, Streck D et al (2009) Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod Pathol 22:1303–1311CrossRefGoogle Scholar
  17. 17.
    Basaran D, Usubutun A, Salman MC, Narin MA, Boyraz G, Turkmen O et al (2018) The clinicopathological study of 21 cases with uterine smooth muscle tumors of uncertain malignant potential—centralized review can purify the diagnosis. Int J Gynecol Cancer 28:233–240CrossRefGoogle Scholar
  18. 18.
    Santoro A, Angelico G, Arciuolo D, Inzani F, Fanfani F, Romualdi D et al (2018) Failure of ulipristal acetate treatment as an indication for uterine malignancy: two case reports. Medicine 97(31):e11532CrossRefGoogle Scholar
  19. 19.
    Kurjak A, Zalud I (1991) The characterization of uterine tumors by transvaginal color Doppler. Ultrasound Obstet Gynecol 1:50–52CrossRefGoogle Scholar
  20. 20.
    Dennis K, Lehr A (2017) Charakterisierung von Leiomyomen und deren Varianten sowie atypischen glattmuskulären Tumoren und uterinen Sarkomen anhand von 4040 Leiomyom Operationen im Rahmen des Forschungsprojekts „Charakterisierung von Leiomyomen und uterinen Sarkomen“zur Erstellung eines Sarkom-Risiko Scores für den klinischen Alltag. Dissertation, University of GreifswaldGoogle Scholar
  21. 21.
    Skorstad M, Kent A, Lieng M (2016) Preoperative evaluation in women with uterine leiomyosarcoma. A nationwide cohort study. Acta Obstet Gynecol Scand 95:1228–1234CrossRefGoogle Scholar
  22. 22.
    van der Haak L, Nieboer TE, Jansen FW, de Kroon CD, Milo IW (2019) Incidence and groups at risk for unexpected uterine leiomyosarcoma: a Dutch nationwide cohort study. Arch Gynecol Obstet 299:159–165CrossRefGoogle Scholar
  23. 23.
    Buttram VCJ, Reiter RC (1981) Uterine leiomyomata: etiology, symptomatology, and management. Fertil Steril 36:433–445CrossRefGoogle Scholar
  24. 24.
    Parker WH, Fu YS, Berek JS (1994) Uterine sarcoma in patients operated on for presumed leiomyoma and rapidly growing leiomyoma. Obstet Gynecol 83:414–418PubMedGoogle Scholar
  25. 25.
    Baird D, Garrett TA, Laughlin SK, Davis B, Semelka RC, Peddada SD (2010) Short-term change in growth of uterine leiomyoma: tumor growth spurts. Fertil Steril 95:242–246CrossRefGoogle Scholar
  26. 26.
    Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379CrossRefGoogle Scholar
  27. 27.
    Zhang J, Yu KF (1998) What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280:1690–1691CrossRefGoogle Scholar
  28. 28.
    Cullen Alison C, Frey HC (1999) Probabilistic techniques in exposure assessment: a handbook for dealing with variability and uncertainty in models and inputs. Springer, BerlinGoogle Scholar
  29. 29.
    Delignette-Muller ML, Dutang C (2015) fitdistrplus: an R package for fitting distributions. J Stat Soft 64:1–34CrossRefGoogle Scholar
  30. 30.
    Seidman MA, Oduyebo T, Muto MG, Crum CP, Nucci MR, Quade BJ (2012) Peritoneal dissemination complicating morcellation of uterine mesenchymal neoplasms. PLoS ONE 7(11):e50058CrossRefGoogle Scholar
  31. 31.
    Goto A, Takeuchi S, Sugimura K, Maruo T (2002) Usefulness of Gd-DTPA contrast-enhanced dynamic MRI and serum determination of LDH and its isozymes in the differential diagnosis of leiomyosarcoma from degenerated leiomyoma of the uterus. Int J Gynecol Cancer 12:354–361CrossRefGoogle Scholar
  32. 32.
    Matsuda M, Ichimura T, Kasai M, Murakami M, Kawamura N, Hayashi T et al (2014) Preoperative diagnosis of usual leiomyoma, atypical leiomyoma, and leiomyosarcoma. Sarcoma 2014:498682CrossRefGoogle Scholar
  33. 33.
    Plasvsic SK, Patham B, Honemeyer U, Kurjak A (2011) Uterine lesions: advances in ultrasound diagnosis. In: Kurjak A, Chervenak FA (eds) Donald school textbook of ultrasound in obstetrics and gynecology, 3rd edn. Jaypee Brothers Medical Publishers Ltd, New Delhi, pp 770–787Google Scholar
  34. 34.
    Kawamura N, Ichimura T, Takahashi K, Tsujimura A, Ishiko O, Ogita S (2002) Transcervical needle biopsy of uterine myoma-like tumors using an automatic biopsy gun. Fertil Steril 77:1060–1064CrossRefGoogle Scholar
  35. 35.
    Kawamura N, Ichimura T, Ito F, Shibata S, Takahashi K, Tsujimura A et al (2002) Transcervical needle biopsy for the differential diagnosis between uterine sarcoma and leiomyoma. Cancer 94(6):1713–1720CrossRefGoogle Scholar
  36. 36.
    Worldwide AAMIG (2014) AAGL practice report: morcellation during uterine tissue extraction. J Minim Invasive Gynecol 21:517–530CrossRefGoogle Scholar
  37. 37.
    Sagae S, Yamashita K, Ishioka S, Nishioka Y, Terasawa K, Mori M et al (2004) Preoperative diagnosis and treatment results in 106 patients with uterine sarcoma in Hokkaido. Oncology 67:33–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Günter Köhler
    • 1
  • Marcus Vollmer
    • 2
    Email author
  • Neetika Nath
    • 2
    • 3
  • Philipp-Andreas Hessler
    • 5
  • Katarina Dennis
    • 5
  • Angela Lehr
    • 5
  • Martina Köller
    • 5
  • Christine Riechmann
    • 5
  • Helena Bralo
    • 5
  • Dominika Trojnarska
    • 1
  • Hanka Lehnhoff
    • 1
  • Johann Krichbaum
    • 6
  • Manfred Krichbaum
    • 6
  • Katja Evert
    • 4
  • Matthias Evert
    • 4
  • Marek Zygmunt
    • 1
  • Lars Kaderali
    • 2
  1. 1.Department of Obstetrics and GynecologyUniversity Medicine GreifswaldGreifswaldGermany
  2. 2.Institute of BioinformaticsUniversity Medicine GreifswaldGreifswaldGermany
  3. 3.Interfaculty Institute for Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
  4. 4.Institute of PathologyUniversity of RegensburgRegensburgGermany
  5. 5.Department of Gynecologic SurgeryHospital SachsenhausenFrankfurt/MainGermany
  6. 6.Outpatient Department GynmünsterVAAOMünsterGermany

Personalised recommendations