Advertisement

Archives of Gynecology and Obstetrics

, Volume 300, Issue 6, pp 1531–1539 | Cite as

Reference intervals of serum lipids in the second and third trimesters of pregnancy in a Caucasian cohort: the LIFE Child study

  • Anne Dathan-StumpfEmail author
  • Mandy Vogel
  • Alexander Jank
  • Joachim Thiery
  • Wieland Kiess
  • Holger Stepan
Maternal-Fetal Medicine
  • 39 Downloads

Abstract

Background

The study aimed to establish reference intervals for serum lipids and apolipoproteins in pregnant women depending on trimester and parity, and to investigate the influence of various factors on lipid and apolipoprotein concentrations.

Materials and methods

A total of 748 pregnant women (n = 683 in the second trimester, n = 676 in the third trimester) were included in the study and reference intervals for total cholesterol (TC), HDL, LDL, triglycerides (TG), apoA1 and apoB were determined as empirical quantiles. The measurement of serum lipids was performed using a validated specific homozygous enzymatic color test. Hierarchical models were used to investigate hypothesized relations.

Results

Except for apoA1, all serum lipids levels showed a significant change from the second to the third trimester. This increase was most pronounced for TGs. Especially in the third trimester, the concentrations of serum lipids exceeded the currently accepted reference values for non-pregnant women by a factor of 2.5. Reference intervals of serum lipids at the second and third trimesters in healthy pregnant women were as following: TC 4.45–8.99 and 4.83–9.71 mmol/l, HDL 1.33–3.06 and 1.16–3.13 mmol/l, LDL 2.14–6.11 and 2.35–6.98 mmol/l, TG 0.92–3.0 and 1.37–4.76 mmol/l as well as apoB 0.69–1.93 and 0.85–2.21 g/l. Parity and nutrient intake were not significantly associated with changes in lipid concentration. Prematurity was associated with a significant decrease in TC and TG levels.

Conclusion

Detailed reference values for serum lipids and apolipoproteins in pregnancy are now available for a Caucasian cohort. Further, long-term studies are still needed to assess the effect of the extensive concentration changes of serum lipids in pregnancy and their atherogenic risk definitively.

Keywords

LIFE Child Pregnancy Reference data Serum lipids Caucasian cohort 

Abbreviations

~

Approximately

ANOVA

Analysis of variance

apoA1

Apolipoprotein A1

apoB

Apolipoprotein B

Body mass index

BMI

DHEAS

Dehydroepiandrosteron sulfate

ECLIA

Electrochemiluminescence immunoassay

FFQ

Food frequency questionnaire

GDM

Gestational Diabetes Mellitus

HDL

High-density lipoprotein cholesterol

LC–MS/MS

Liquid chromatography–mass spectrometry

LDL

Low-density lipoprotein cholesterol

PAH

Pregnancy associated hypertension

SHBG

Sex hormone binding globulin

TC

Total cholesterol

TG

Triglyceride

Notes

Author contributions

ADS was involved in protocol development, data analysis and writing manuscript. MV was involved in data management and analysis. AJ was involved in protocol development. JT was involved in data collection. WK was involved in project development, data collection and manuscript editing. HS was involved in manuscript editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants involved in the study. All subjects gave their written consent for study participation. For participants under the age of 12 years, parents had to give their written consent.

Statement of financial support

This publication is supported by LIFE—Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany. LIFE is funded by means of the European Union, by the European Regional Development Fund (ERDF) and by means of the Free State of Saxony within the framework of the excellence initiative of the Saxonian Ministry of Science and Arts (SMWK), Free State of Saxony, Germany.

Ethical approval

All procedures were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975 (in its most recently amended version). The study was approved by the Ethical Committee of the University of Leipzig (reference number: Reg. No. 264-10-19042010). LIFE Child is registered by the trial number: NCT02550236.

References

  1. 1.
    Richter-Kuhlmann E (2012) Gesundheitssurvey des Robert-Koch-Instituts: zivilisationskrankheiten nehmen zu. Deutsch Ärztebl 109(26):1376–1377Google Scholar
  2. 2.
    Mensink GBM, Schienkiewitz A, Haftenberger M et al (2013) Übergewicht und Adipositas in Deutschland Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsbl 56:786–794CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Roloff R (2007) Die Prävalenz von Übergewicht und Adipositas bei Schwangeren und ihr geburthilfliches Ergebnis zwischen 1980 und 2005 im Vergleich an der Univeristäts-Frauenklinik Würzburg, WürzburgGoogle Scholar
  5. 5.
    Dathan-Stumpf A, Vogel M, Rieger K et al (2016) Serum lipid levels were related to socio-demographic characteristics in a German population-based child cohort. Acta Paediatr 105(8):e360–e367CrossRefGoogle Scholar
  6. 6.
    Knopp RH, Warth MR, Charles D et al (1986) Lipoprotein metabolism in pregnancy, fat transport to the fetus, and the effects of diabetes. Biol Neonate 50(6):297–317CrossRefGoogle Scholar
  7. 7.
    Aguilar Cordero MJ, Baena García L, Sánchez López AM et al (2015) Triglyceride levels as a risk factor during pregnancy; biological modeling; systematic review. Nutr Hosp 32(2):517–527PubMedGoogle Scholar
  8. 8.
    Sidhwani S, Scoccia B, Sunghay S et al (2011) Polycystic ovary syndrome is associated with atherogenic changes in lipoprotein particle number and size independent of body weight. Clin Endocrinol (Oxf) 75(1):76–82CrossRefGoogle Scholar
  9. 9.
    Lippi G, Albiero A, Montagnana M et al (2007) Lipid and lipoprotein profile in physiological pregnancy. Clin Lab 53(3–4):173–177PubMedGoogle Scholar
  10. 10.
    Ferriols E, Rueda C, Gamero R et al (2016) Relationship between lipid alterations during pregnancy and adverse pregnancy outcomes. Clin Investig Arterioscler. 28(5):232–244PubMedGoogle Scholar
  11. 11.
    Ghodke B, Pusukuru R, Mehta V (2017) Association of lipid profile in pregnancy with preeclampsia, gestational diabetes mellitus, and preterm delivery. Cureus 9(7):e1420PubMedPubMedCentralGoogle Scholar
  12. 12.
    Vrijkotte TG, Krukziener N, Hutten BA et al (2012) Maternal lipid profile during early pregnancy and pregnancy complications and outcomes: the ABCD study. J Clin Endocrinol Metab 97(11):3917–3925CrossRefGoogle Scholar
  13. 13.
    Gratacós E, Casals E, Sanllehy C et al (1996) Variation in lipid levels during pregnancy in women with different types of hypertension. Acta Obstet Gynecol Scand 75(10):896–901CrossRefGoogle Scholar
  14. 14.
    Gallos ID, Sivakumar K, Kilby MD et al (2013) Pre-eclampsia is associated with, and preceded by, hypertriglyceridaemia: a meta-analysis. BJOG 120(11):1321–1332CrossRefGoogle Scholar
  15. 15.
    Bayhan G, Koçyigit Y, Atamer A et al (2005) Potential atherogenic roles of lipids, lipoprotein (a) and lipid peroxidation in preeclampsia. Gynecol Endocrinol 21(1):1–6CrossRefGoogle Scholar
  16. 16.
    Nikolov A, Dimitrov A, Liubomirova M et al (2002) Lipid metabolism and its changes in pregnancy. Akush Ginekol (Sofiia) 41(4):30–34Google Scholar
  17. 17.
    Deslypere JP, Van Trappen Y, Thiery M (1990) Influence of parity on plasma lipid levels. Eur J Obstet Gynecol Reprod Biol 35(1):1–6CrossRefGoogle Scholar
  18. 18.
    Pecks U, Rath W, Kleine-Eggebrecht N et al (2016) Maternal serum lipid, estradiol, and progesterone levels in pregnancy, and the impact of placental and hepatic pathologies. Geburtshilfe Frauenheilkd 76(7):799–808CrossRefGoogle Scholar
  19. 19.
    Makieva S, Saunders PT, Norman JE (2014) Androgens in pregnancy: roles in parturition. Hum Reprod Update 20(4):542–559CrossRefGoogle Scholar
  20. 20.
    Quante M, Hesse M, Döhnert M et al (2012) The LIFE child study: a life course approach to disease and health. BMC Public Health 12:1021CrossRefGoogle Scholar
  21. 21.
    DESTATIS SB (Stand 17. Oktober 2016) Durchschnittliches Alter der Mutter bei der Geburt des Kindes 2017 (biologische Geburtenfolge) nach Bundesländern. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Geburten/Tabellen/geburten-mutter-alter-bundeslaender.html
  22. 22.
    Poulain T, Baber R, Vogel M et al (2017) The LIFE Child study: a population-based perinatal and pediatric cohort in Germany. Eur J Epidemiol 32(2):145–158CrossRefGoogle Scholar
  23. 23.
    Schneider H, Husslein P (2006) Schneider KTM Die Geburtshilfe. 3.Auflage, vol 185. Springer, BerlinCrossRefGoogle Scholar
  24. 24.
    Heinrich J, Brüske I, Schnappinger M et al (2012) Die zwei deutschen Geburtskohorten GINIplus und LISAplus [Two German birth cohorts: gINIplus and LISAplus]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55:864–874CrossRefGoogle Scholar
  25. 25.
    von Berg A, Krämer U, Link E et al (2010) Impact of early feeding on childhood eczema: development after nutritional intervention compared with the natural course—the GINIplus study up to the age of 6 years. Clin Exp Allergy 40:627–636PubMedGoogle Scholar
  26. 26.
    Stiegler P, Sausenthaler S, Buyken AE et al (2010) A new FFQ designed to measure the intake of fatty acids and antioxidants in children. Public Health Nutr 13(1):38–46CrossRefGoogle Scholar
  27. 27.
    Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik Laborkathalog: http://ilm.uniklinikum-leipzig.de/ilm.site,postext,laborkatalog.html?modus=detail&gruppe=CHOL_S
  28. 28.
    R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/
  29. 29.
    Johnson JL, Slentz CA, Duscha BD et al (2004) Gender and racial differences in lipoprotein subclass distributions: the STRRIDE study. Atherosclerosis 176(2):371–377CrossRefGoogle Scholar
  30. 30.
    Miljkovic-Gacic I, Bunker CH, Ferrell RE et al (2006) Lipoprotein subclass and particle size differences in Afro-Caribbeans, African Americans, and white Americans: associations with hepatic lipase gene variation. Metabolism 55(1):96–102CrossRefGoogle Scholar
  31. 31.
    Piechota WSA (1992) Reference ranges of lipids and apolipoproteins in pregnancy. Eur J Obstet Gynecol Reprod Biol 45(1):27–35CrossRefGoogle Scholar
  32. 32.
    Chen QJ, Lai HM, Chen BD et al (2016) Appropriate LDL-C-to-HDL-c ratio cutoffs for categorization of cardiovascular disease risk factors among Uygur Adults in Xinjiang, China. Int J Environ Res Public Health 13(2):235CrossRefGoogle Scholar
  33. 33.
    Millán J, Pintó X, Muñoz A et al (2009) Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag 5:757–765PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ying C, Yue C, Zhang C et al (2015) Analysis of serum lipids levels and the establishment of reference intervals for serum lipids in middle and late pregnancy. Zhonghua Fu Chan Ke Za Zhi 50(12):926–930PubMedGoogle Scholar
  35. 35.
    Pusukuru R, Shenoi AS, Kyada PK et al (2016) Evaluation of lipid profile in second and third trimester of pregnancy. J Clin Diagn Res 10(3):QC12-6PubMedGoogle Scholar
  36. 36.
    Pecks U, Rath W, Caspers R et al (2013) Oxidatively modified LDL particles in the human placenta in early and late onset intrauterine growth restriction. Placenta 34(12):1142–1149CrossRefGoogle Scholar
  37. 37.
    Heller A (1998) Geburtsvorbereitung methode Menner-Heller. Georg Thieme Verlag, StuttgartGoogle Scholar
  38. 38.
    Emet T, Ustüner I, Güven SG et al (2013) Plasma lipids and lipoproteins during pregnancy and related pregnancy outcomes. Arch Gynecol Obstet 288(1):49–55CrossRefGoogle Scholar
  39. 39.
    Jiang S, Jiang J, Xu H et al (2017) Maternal dyslipidemia during pregnancy may increase the risk of preterm birth: a meta-analysis. Taiwan J Obstet Gynecol 56(1):9–15CrossRefGoogle Scholar
  40. 40.
    Wang C, Zhu W, Wei Y et al (2016) The associations between early pregnancy lipid profiles and pregnancy outcomes. J Perinatol.  https://doi.org/10.1038/jp.2016.191 CrossRefPubMedGoogle Scholar
  41. 41.
    Gruchot M, Gräter T, Kratzer W et al (2013) Einfluss der Nüchternzeit auf verschiedene Lipidwerte in Korrelation zu einer bestehenden Steatosis hepatis—Eine bevölkerungsstichprobe an 2445 Probanden. Z Gastroenterol 51:K286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LIFE Child- Leipzig Research Center for Civilization DiseasesLeipzig UniversityLeipzigGermany
  2. 2.Hospital for Children and AdolescentsUniversity HospitalLeipzigGermany
  3. 3.Centre of Paediatric Research (CPL)Leipzig UniversityLeipzigGermany
  4. 4.Department of ObstetricsUniversity Hospital LeipzigLeipzigGermany
  5. 5.Institute of Laboratory Medicine, Clinical Chemistry and Molecular DiagnosticsUniversity HospitalLeipzigGermany

Personalised recommendations