Archives of Gynecology and Obstetrics

, Volume 300, Issue 5, pp 1423–1434 | Cite as

The role of Kisspeptin levels in polycystic ovary syndrome: a systematic review and meta-analysis

  • Nicole Paloma de Assis Rodrigues
  • Antonio Simone Laganà
  • Victor Zaia
  • Amerigo Vitagliano
  • Caio Parente Barbosa
  • Renato de Oliveira
  • Camila Martins Trevisan
  • Erik MontagnaEmail author
Gynecologic Endocrinology and Reproductive Medicine



Polycystic ovarian syndrome (PCOS) is a complex and not fully elucidated pathology. This prevalent endocrinopathy affects patients in reproductive age, impacts on estrogen-dependent diseases, as well as in infertility. In this context, Kisspeptin (KP) may be considered a potential biomarker for PCOS diagnosis and follow-up. Here, we aimed to verify the levels of KP in obese and non-obese patients with PCOS, their relationship with other hormones, in comparison to healthy controls.


A systematic review and meta-analysis were performed according to the PRISMA guidelines. We searched MEDLINE, EMBASE, PsycINFO, Global Health, The Cochrane Library, Health Technology Assessment Database, and Web of Science for eligible studies. A random effects model meta-analysis of standardized mean difference (SMD) was conducted and the I2 was used to assess heterogeneity. Meta-regression was conducted through mixed-effects model.


A total of 12 studies were included, comprising 660 PCOS patients and 600 controls. The KP levels were lower in the control group (0.76: 0.17–1.35; 95% CI). In the subgroup analyses, patients were divided in non-overweight/obese (BMI < 25) and overweight/obese (BMI ≥ 25) groups. The meta-regression revealed a difference between the obese and non-obese groups (z = 2.81; p = 0.0050).


PCOS patients showed higher KP levels than control, and obese non-PCOS patients also showed altered KP levels. All studies had poor descriptions of sample collection, pre-analytical and analytical procedures, which is critical considering structural characteristics of the KP molecule.


Polycystic ovary syndrome Kisspeptins Human fertility Meta-analysis Obesity 



Dr. Bianca Bianco for the support in the manuscript preparation.

Authors’ contribution

NP Assis Rodrigues: design of the study, literature review, data collection, data analysis and manuscript writing; AS Laganà: data analysis, manuscript writing and editing; V Zaia: data collection, data analysis and review of the manuscript; A Vitagliano: data analysis and review of the manuscript; CP Barbosa: review of the manuscript; R Oliveira: data analysis, review and manuscript writing; CM Trevisan: data collection, data analysis and review of the manuscript; E Montagna: design of the study, literature review, data analysis and manuscript writing/review. All authors read and approved the final version of the manuscript.



Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to disclose.

Informed consent

Not applicable.


  1. 1.
    Giampaolino P, Della Corte L, De Rosa N, Mercorio A, Bruzzese D, Bifulco G (2017) Ovarian volume and PCOS: a controversial issue. Gynecol Endocrinol 34:229–232. CrossRefPubMedGoogle Scholar
  2. 2.
    Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47. CrossRefGoogle Scholar
  3. 3.
    Laganà AS, Rossetti P, Buscema M, La Vignera S, Condorelli RA, Gullo G, Granese R, Triolo O (2016) Metabolism and ovarian function in PCOS women: a therapeutic approach with inositols. Int J Endocrinol 2016:6306410. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mani H, Levy MJ, Davies MJ, Morris DH, Gray LJ, Bankart J, Blackledge H, Khunti K, Howlett TA (2013) Diabetes and cardiovascular events in women with polycystic ovary syndrome: a 20-year retrospective cohort study. Clin Endocrinol (Oxf) 78:926–934. CrossRefGoogle Scholar
  5. 5.
    Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, Witchel SF (2006) Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 91:4237–4245. CrossRefPubMedGoogle Scholar
  6. 6.
    Palomba S, Falbo A, Russo T, Tolino A, Orio F, Zullo F (2010) Pregnancy in women with polycystic ovary syndrome: the effect of different phenotypes and features on obstetric and neonatal outcomes. Fertil Steril 94:1805–1811. CrossRefPubMedGoogle Scholar
  7. 7.
    Laganà AS, Garzon S, Casarin J, Franchi M, Ghezzi F (2018) Inositol in polycystic ovary syndrome: restoring fertility through a pathophysiology-based approach. Trends Endocrinol Metab 29:768–780. CrossRefPubMedGoogle Scholar
  8. 8.
    Matsuzaki T, Tungalagsuvd A, Takeshi I, Munkhzaya M, Yanagihara R, Tokui T, Yano K, Mayila Y, Kato T, Kuwahara A, Matsui S, Irahara M (2017) Kisspeptin mRNA expression is increased in the posterior hypothalamus in the rat model of polycystic ovary syndrome. Endocr J 64:7–14. CrossRefPubMedGoogle Scholar
  9. 9.
    Albalawi FS, Daghestani MH, Daghestani MH, Eldali A, Warsy AS (2018) rs4889 polymorphism in KISS1 gene, its effect on polycystic ovary syndrome development and anthropometric and hormonal parameters in Saudi women. J Biomed Sci 25:50. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cortés ME, Carrera B, Rioseco H, Pablo del Rio J, Vigil P (2015) The role of kisspeptin in the onset of puberty and in the ovulatory mechanism: a mini-review. J Pediatr Adolesc Gynecol 28:286–291. CrossRefPubMedGoogle Scholar
  11. 11.
    Trevisan CM, Montagna E, de Oliveira R, Christofolini DM, Barbosa CP, Crandall KA, Bianco B (2018) Kisspeptin/GPR54 system: what do we know about its role in human reproduction? Cell Physiol Biochem 49:1259–1276. CrossRefPubMedGoogle Scholar
  12. 12.
    Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, PRISMA-P Group (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647. CrossRefGoogle Scholar
  13. 13.
    National Center for Biotechnology Information. Available at Accessed 27 Feb 2019
  14. 14.
    Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wells G, Shea B, O’Connell D, Peterson G, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available at Accessed 27 Feb 2019
  16. 16.
    Borenstein M, Hedges LV, Higgins JPT, Rothstein RH (2009) Introduction to meta-analysis. Wiley, West SussexCrossRefGoogle Scholar
  17. 17.
    Higgins JPT (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Aung T, Halsey J, Kromhout D, Gerstein HC, Marchioli R, Tavazzi L, Geleijnse JM, Rauch B, Ness A, Galan P, Chew EY, Bosch J, Collins R, Lewington S, Armitage J, Clarke R, Omega-3 Treatment Trialists’ Collaboration (2018) Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol 3:225–234. CrossRefPubMedGoogle Scholar
  19. 19.
    Sterne JAC, Egger M (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 54:1046–1055. CrossRefPubMedGoogle Scholar
  20. 20.
    Baujat B, Mahé C, Pignon J-P, Hill C (2002) A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials: graphical method for exploring heterogeneity in meta-analyses. Stat Med 21:2641–2652. CrossRefPubMedGoogle Scholar
  21. 21.
    Estébanez N, Gómez-Acebo I, Palazuelos C, Llorca J, Dierssen-Sotos T (2018) Vitamin D exposure and risk of breast cancer: a meta-analysis. Sci Rep 8:9039. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schwarzer G, Carpenter JR, Rücker G (2015) Meta-analysis with R. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar
  23. 23.
    Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48. CrossRefGoogle Scholar
  24. 24.
    Branavan U, Muneeswaran K, Wijesundera WSS, Senanayake A, Chandrasekharan NV, Wijeyaratne CN (2019) Association of KISS1 and GPR54 gene polymorphisms with polycystic ovary syndrome among sri lankan women. Biomed Res Int 2019:6235680. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Umayal B, Jayakody SN, Chandrasekharan NV, Wijesundera WS, Wijeyaratne CN (2019) Polycystic ovary syndrome (PCOS) and kisspeptin: a Sri Lankan study. J Postgrad Med 65:18–23. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Panidis D, Rousso D, Koliakos G, Kourtis A, Katsikis I, Farmakiotis D, Votsi E, Diamantikandarakis E (2006) Plasma metastin levels are negatively correlated with insulin resistance and free androgens in women with polycystic ovary syndrome. Fertil Steril 85:1778–1783. CrossRefPubMedGoogle Scholar
  27. 27.
    Chen X, Mo Y, Li L, Chen Y, Li Y, Yang D (2010) Increased plasma metastin levels in adolescent women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 149:72–76. CrossRefPubMedGoogle Scholar
  28. 28.
    Jeon YE, Lee KE, Jung JA, Yim SY, Kim H, Seo SK, Cho S, Choi YS, Lee BS (2013) Kisspeptin, leptin, and retinol-binding protein 4 in women with polycystic ovary syndrome. Gynecol Obstet Invest 75:268–274. CrossRefPubMedGoogle Scholar
  29. 29.
    Yilmaz SA, Kerimoglu OS, Pekin AT, Incesu F, Dogan NU, Celik C, Unlu A (2014) Metastin levels in relation with hormonal and metabolic profile in patients with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 180:56–60. CrossRefPubMedGoogle Scholar
  30. 30.
    Emekci Ozay O, Ozay AC, Acar B, Cagliyan E, Seçil M, Küme T (2016) Role of kisspeptin in polycystic ovary syndrome (PCOS). Gynecol Endocrinol 32:718–722. CrossRefPubMedGoogle Scholar
  31. 31.
    Nyagolova PV, Mitkov MD, Orbetzova MM, Terzieva DD (2016) Kisspeptin and galanin-like peptide (galp) levels in women with polycystic ovary syndrome. Int J Pharmaceut Med Res 4:6–12Google Scholar
  32. 32.
    Gorkem U, Togrul C, Arslan E, Sargin Oruc A, Buyukkayaci Duman N (2018) Is there a role for kisspeptin in pathogenesis of polycystic ovary syndrome? Gynecol Endocrinol 34:157–160. CrossRefPubMedGoogle Scholar
  33. 33.
    Daghestani MH (2018) Evaluation of biochemical, endocrine, and metabolic biomarkers for the early diagnosis of polycystic ovary syndrome among non-obese Saudi women. Int J Gynecol Obstet 142:162–169. CrossRefGoogle Scholar
  34. 34.
    Kaya C, Alay İ, Babayeva G, Gedikbaşı A, Ertaş Kaya S, Ekin M, Yaşar L (2019) Serum Kisspeptin levels in unexplained infertility, polycystic ovary syndrome, and male factor infertility. Gynecol Endocrinol 35:228–232. CrossRefPubMedGoogle Scholar
  35. 35.
    Wang T, Han S, Tian W, Zhao M, Zhang H (2019) Effects of kisspeptin on pathogenesis and energy metabolism in polycystic ovarian syndrome (PCOS). Gynecol Endocrinol 5:1. (Epub ahead of print) CrossRefGoogle Scholar
  36. 36.
    Cela V, Obino MER, Alberga Y, Pinelli S, Sergiampietri C, Casarosa E, Simi G, Papini F, Artini PG (2018) Ovarian response to controlled ovarian stimulation in women with different polycystic ovary syndrome phenotypes. Gynecol Endocrinol 34(6):518–523. CrossRefPubMedGoogle Scholar
  37. 37.
    Jamil AS, Alalaf SK, Al-Tawil NG, Al-Shawaf T (2016) Comparison of clinical and hormonal characteristics among four phenotypes of polycystic ovary syndrome based on the Rotterdam criteria. Arch Gynecol Obstet 293:447–456. CrossRefPubMedGoogle Scholar
  38. 38.
    Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R (2016) Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril 106:6–15. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tolson KP, Garcia C, Yen S, Simonds S, Stefanidis A, Lawrence A, Smith JT, Kauffman AS (2014) Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. J Clin Invest. 124:3075–3079. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Holmes D (2014) Kisspeptin signalling linked to obesity. Nat Rev Endocrinol 10:511. CrossRefPubMedGoogle Scholar
  41. 41.
    Katulski K, Podfigurna A, Czyzyk A, Meczekalski B, Genazzani AD (2018) Kisspeptin and LH pulsatile temporal coupling in PCOS patients. Endocrine 61:149–157. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    d’Anglemont de Tassigny X, Jayasena CN, Murphy KG, Dhillo WS, Colledge WH (2017) Mechanistic insights into the more potent effect of KP-54 compared to KP-10 in vivo. PLoS One 12:e0176821. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kolodziejski PA, Pruszynska-Oszmalek E, Korek E, Sassek M, Szczepankiewicz D, Kaczmarek P, Nogowski L, Mackowiak P, Nowak KW, Krauss H, Strowski MZ (2018) Serum levels of spexin and kisspeptin negatively correlate with obesity and insulin resistance in women. Physiol Res 67:45–56. CrossRefPubMedGoogle Scholar
  44. 44.
    Kasum M, Franulić D, Čehić E, Orešković S, Lila A, Ejubović E (2017) Kisspeptin as a promising oocyte maturation trigger for in vitro fertilisation in humans. Gynecol Endocrinol 33:583–587. CrossRefPubMedGoogle Scholar
  45. 45.
    Decourt C, Robert V, Anger K, Galibert M, Madinier J-B, Liu X, Dardente H, Lomet D, Delmas AF, Caraty A, Herbison AE, Anderson GM, Aucagne V, Beltramo M (2016) A synthetic kisspeptin analog that triggers ovulation and advances puberty. Sci Rep 6:26908. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nicole Paloma de Assis Rodrigues
    • 1
  • Antonio Simone Laganà
    • 2
  • Victor Zaia
    • 1
  • Amerigo Vitagliano
    • 3
  • Caio Parente Barbosa
    • 1
    • 4
  • Renato de Oliveira
    • 1
    • 4
  • Camila Martins Trevisan
    • 1
  • Erik Montagna
    • 1
    Email author
  1. 1.Postgraduate Program in Health SciencesFaculdade de Medicina do ABCSanto AndréBrazil
  2. 2.Department of Obstetrics and Gynecology“Filippo Del Ponte” Hospital, University of InsubriaVareseItaly
  3. 3.Department of Women and Children’s Health, Unit of Gynecology and ObstetricsUniversity of PaduaPaduaItaly
  4. 4.Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective HealthFaculdade de Medicina do ABCSanto AndréBrazil

Personalised recommendations