Advertisement

Archives of Gynecology and Obstetrics

, Volume 300, Issue 3, pp 519–529 | Cite as

Diagnostic accuracy of preoperative 18F-FDG PET or PET/CT in detecting pelvic and para-aortic lymph node metastasis in patients with endometrial cancer: a systematic review and meta-analysis

  • Jiali Hu
  • Kai Zhang
  • Ye Yan
  • Yuqin Zang
  • Yingmei WangEmail author
  • Fengxia XueEmail author
Review
  • 73 Downloads

Abstract

Purpose

The aim of this study was to assess the diagnostic accuracy of preoperative 18F-FDG PET or PET/CT in detecting pelvic lymph node (PLN) and para-aortic lymph node (PALN) metastasis in patients with endometrial cancer (EC) in systematic review and meta-analysis format.

Methods

A comprehensive search was performed on PubMed, Cochrane Library, EMBASE, Web of science, SpringerLink and Science Direct for studies reporting the diagnostic value of preoperative 18F-FDG PET or PET/CT in detecting PLN and PALN metastasis had been published up to August 8, 2018. Studies were included if enough data could be extracted for calculation of diagnostic accuracy indices.

Results

Nineteen studies (1431 patients in total) were included in the analysis. On a lymph node basis, the overall pooled sensitivity, specificity, AUC and overall diagnostic accuracy (Q* index) of 18F-FDG PET or PET/CT in detecting total lymph node metastasis were 0.68 (95% CI 0.63–0.73), 0.96 (95% CI 0.96–0.97), 0.82, and 0.75, respectively. The corresponding indices for detecting PLN metastasis were 0.61 (95% CI 0.52–0.69), 0.96 (95% CI 0.95–0.97), 0.79, and 0.73, respectively. And the corresponding value for detection of PALN were 0.70 (95% CI 0.58–0.79), 0.92 (95% CI 0.9–0.94), 0.84, and 0.77, respectively. Data based on patients also performed well.

Conclusions

18F-FDG PET and PET/CT both have excellent diagnostic performance for detecting lymph node metastasis, including PLN and PALN metastasis, in patients with endometrial cancer preoperatively. Though the utility of this method is limited due to its moderate sensitivity, it can help surgeons make better-tailored surgical decision for its high specificity.

Keywords

Endometrial cancer PET PET/CT Pelvic lymph node metastasis Para-aortic lymph node metastasis 

Notes

Acknowledgements

The authors thank Drs F. Xue and Drs Y. Wang for directing this systematic review and meta-analysis. This study was supported by grants from the Natural Science Foundation of China (No. 81772790 and No. 81572568).

Author contributions

JH: literature review and manuscript writing; KZ: designation of the tables and figures; YY: literature review and data analysis; YZ: language emendation; FX and YW: manuscript revision and providers of the funding for the project together.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. 1.
    Torre LA, Islami F, Siegel RL, Ward EM, Jemal A (2017) Global cancer in women: burden and trends. Cancer Epidemiol Biomarkers Prev 26(4):444–457.  https://doi.org/10.1158/1055-9965.EPI-16-0858 CrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA 68(1):7–30. doi:10.3322/caac.21442Google Scholar
  3. 3.
    Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E (2016) Endometrial cancer. Lancet 387(10023):1094–1108.  https://doi.org/10.1016/s0140-6736(15)00130-0 CrossRefGoogle Scholar
  4. 4.
    Teng F, Zhang YF, Wang YM, Yu J, Lang X, Tian WY, Jiang CX, Xue FX (2015) Contrast-enhanced MRI in preoperative assessment of myometrial and cervical invasion, and lymph node metastasis: diagnostic value and error analysis in endometrial carcinoma. Acta Obstet Gynecol Scand 94(3):266–273.  https://doi.org/10.1111/aogs.12570 CrossRefGoogle Scholar
  5. 5.
    Fares R, Kehoe S, Shams N (2018) Preoperative prediction of lymph nodal metastases in endometrial carcinoma: Is it possible?: A literature review. Int J Gynecol Cancer 28(2):394–400.  https://doi.org/10.1097/IGC.0000000000001163 CrossRefGoogle Scholar
  6. 6.
    Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, Chon HS, Chu C, Cohn D, Crispens MA, Damast S, Dorigo O, Eifel PJ, Fisher CM, Frederick P, Gaffney DK, George S, Han E, Higgins S, Huh WK, Lurain JR, 3rd, Mariani A, Mutch D, Nagel C, Nekhlyudov L, Fader AN, Remmenga SW, Reynolds RK, Tillmanns T, Ueda S, Wyse E, Yashar CM, McMillian NR, Scavone JL (2018) Uterine Neoplasms, Version 1.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 16(2):170-199.  https://doi.org/10.6004/jnccn.2018.0006 CrossRefGoogle Scholar
  7. 7.
    Frost JA, Webster KE, Morrison J (2017) Lymphadenectomy for treatment of early-stage endometrial cancer. JAMA Oncol 3(1):117–118.  https://doi.org/10.1001/jamaoncol.2016.4873 CrossRefGoogle Scholar
  8. 8.
    Damjanovic J, Janssen JC, Furth C, Diederichs G, Walter T, Amthauer H, Makowski MR (2018) (68) Ga-PSMA–PET/CT for the evaluation of pulmonary metastases and opacities in patients with prostate cancer. Cancer Imaging 18(1):20.  https://doi.org/10.1186/s40644-018-0154-8 CrossRefGoogle Scholar
  9. 9.
    Bae SU, Won KS, Song BI, Jeong WK, Baek SK, Kim HW (2018) Accuracy of F-18 FDG PET/CT with optimal cut-offs of maximum standardized uptake value according to size for diagnosis of regional lymph node metastasis in patients with rectal cancer. Cancer Imaging 18(1):32.  https://doi.org/10.1186/s40644-018-0165-5 CrossRefGoogle Scholar
  10. 10.
    Zhang L, Zhang X, He Q, Zhang R, Fan W (2018) The role of initial (18)F-FDG PET/CT in the management of patients with suspected extramedullary plasmocytoma. Cancer Imaging 18(1):19.  https://doi.org/10.1186/s40644-018-0152-x CrossRefGoogle Scholar
  11. 11.
    Dolanbay M, Ozcelik B, Abdulrezzak U, Serin IS, Kutuk MS, Uludag S (2016) F-18 fluoro-d-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in planning of surgery and sentinel lymph node screening in vulvar cancers. Arch Gynecol Obstet 293(6):1319–1324.  https://doi.org/10.1007/s00404-015-3927-3 CrossRefGoogle Scholar
  12. 12.
    Ding XP, Feng L, Ma L (2014) Diagnosis of recurrent uterine cervical cancer: PET versus PET/CT: a systematic review and meta-analysis. Arch Gynecol Obstet 290(4):741–747.  https://doi.org/10.1007/s00404-014-3263-z CrossRefGoogle Scholar
  13. 13.
    Antonsen SL, Loft A, Fisker R, Nielsen AL, Andersen ES, Hogdall E, Tabor A, Jochumsen K, Fago-Olsen CL, Asmussen J, Berthelsen AK, Christensen IJ, Hogdall C (2013) SUVmax of 18FDG PET/CT as a predictor of high-risk endometrial cancer patients. Gynecol Oncol 129(2):298–303.  https://doi.org/10.1016/j.ygyno.2013.01.019 CrossRefGoogle Scholar
  14. 14.
    Kadkhodayan S, Shahriari S, Treglia G, Yousefi Z, Sadeghi R (2013) Accuracy of 18-F-FDG PET imaging in the follow up of endometrial cancer patients: systematic review and meta-analysis of the literature. Gynecol Oncol 128(2):397–404.  https://doi.org/10.1016/j.ygyno.2012.10.022 CrossRefGoogle Scholar
  15. 15.
    Chang MC, Chen JH, Liang JA, Yang KT, Cheng KY, Kao CH (2012) 18F-FDG PET or PET/CT for detection of metastatic lymph nodes in patients with endometrial cancer: a systematic review and meta-analysis. Eur J Radiol 81(11):3511–3517.  https://doi.org/10.1016/j.ejrad.2012.01.024 CrossRefGoogle Scholar
  16. 16.
    Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JD, Reitsma JB, Leeflang MMG, Sterne JAC, Bossuyt PMM, the QUADAS-2 Group (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536CrossRefGoogle Scholar
  17. 17.
    Walter L, Devillé FB, Bouter Lex M, Montori Victor M, de Vet Henrica CW, van der Windt Danielle AWM, Dick Bezemer P (2002) Conducting systematic reviews of diagnostic studies didactic guidelines. Bmc Med Res Methodol 2:1–13CrossRefGoogle Scholar
  18. 18.
    Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A (2006) Meta-DiSc: a software for meta-analysis of test accuracy data. Bmc Med Res Methodol 6:31.  https://doi.org/10.1186/1471-2288-6-31 CrossRefGoogle Scholar
  19. 19.
    group TwcobotAs, (2009) Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study. Lancet 373:125–136.  https://doi.org/10.1016/s01406736(08)61766-3 CrossRefGoogle Scholar
  20. 20.
    Eggemann H, Ignatov T, Kaiser K, Burger E, Costa SD, Ignatov A (2016) Survival advantage of lymphadenectomy in endometrial cancer. J Cancer Res Clin Oncol 142(5):1051–1060.  https://doi.org/10.1007/s00432-015-2109-9 CrossRefGoogle Scholar
  21. 21.
    Papathemelis T, Scharl S, Kronberger K, Gerken M, Scharl A, Pauer A, Klinkhammer-Schalke M (2017) Survival benefit of pelvic and paraaortic lymphadenectomy in high-grade endometrial carcinoma: a retrospective population-based cohort analysis. J Cancer Res Clin Oncol 143(12):2555–2562.  https://doi.org/10.1007/s00432-017-2508-1 CrossRefGoogle Scholar
  22. 22.
    Kim HJ, Cho A, Yun M, Kim YT, Kang WJ (2016) Comparison of FDG PET/CT and MRI in lymph node staging of endometrial cancer. Ann Nucl Med 30(2):104–113.  https://doi.org/10.1007/s12149-015-1037-8 CrossRefGoogle Scholar
  23. 23.
    Kitajima K, Murakami K, Yamasaki E, Fukasawa I, Inaba N, Kaji Y, Sugimura K (2008) Accuracy of 18F-FDG PET/CT in detecting pelvic and paraaortic lymph node metastasis in patients with endometrial cancer. AJR Am J Roentgenol 190(6):1652–1658.  https://doi.org/10.2214/AJR.07.3372 CrossRefGoogle Scholar
  24. 24.
    Jo MS, Choi OH, Suh DS, Yun MS, Kim SJ, Kim GH, Jeon HN (2014) Correlation between expression of biological markers and [F]fluorodeoxyglucose uptake in endometrial cancer. Oncol Res Treat 37(1–2):30–34.  https://doi.org/10.1159/000358163 CrossRefGoogle Scholar
  25. 25.
    Horowitz NS, Dehdashti F, Herzog TJ, Rader JS, Powell MA, Gibb RK, Grigsby PW, Siegel BA, Mutch DG (2004) Prospective evaluation of FDG-PET for detecting pelvic and para-aortic lymph node metastasis in uterine corpus cancer. Gynecol Oncol 95(3):546–551.  https://doi.org/10.1016/j.ygyno.2004.08.009 CrossRefGoogle Scholar
  26. 26.
    Inubashiri E, Hata K, Kanenishi K, Shiota A, Ohno M, Yamamoto Y, Nishiyama Y, Ohkawa M, Hata T (2009) Positron emission tomography with the glucose analog [18F]-fluoro-2-deoxy-d-glucose for evaluating pelvic lymph node metastasis in uterine corpus cancer: comparison with CT and MRI findings. J Obstet Gynaecol Res 35(1):26–34.  https://doi.org/10.1111/j.1447-0756.2008.00832.x CrossRefGoogle Scholar
  27. 27.
    Crivellaro C, Signorelli M, Guerra L, De Ponti E, Pirovano C, Fruscio R, Elisei F, Montanelli L, Buda A, Messa C (2013) Tailoring systematic lymphadenectomy in high-risk clinical early stage endometrial cancer: the role of 18F-FDG PET/CT. Gynecol Oncol 130(2):306–311.  https://doi.org/10.1016/j.ygyno.2013.05.011 CrossRefGoogle Scholar
  28. 28.
    Bese T, Sal V, Demirkiran F, Kahramanoglu I, Tokgozoglu N, Ilvan S, Aydin O, Hallac M, Vatankulu B, Demirayak G, Turan H, Arvas M (2016) The combination of preoperative fluorodeoxyglucose positron emission tomography/computed tomography and sentinel lymph node mapping in the surgical management of endometrioid endometrial cancer. Int J Gynecol Cancer 26(7):1228–1238.  https://doi.org/10.1097/IGC.0000000000000773 CrossRefGoogle Scholar
  29. 29.
    Mayoral M, Paredes P, Domenech B, Fuste P, Vidal-Sicart S, Tapias A, Torne A, Pahisa J, Ordi J, Pons F, Lomena F (2017) 18F-FDG PET/CT and sentinel lymph node biopsy in the staging of patients with cervical and endometrial cancer. Role of dual-time-point imaging. Rev Esp Med Nucl Imagen Mol 36(1):20-26.  https://doi.org/10.1016/j.remn.2016.07.003 Google Scholar
  30. 30.
    Husby JA, Reitan BC, Biermann M, Trovik J, Bjørge L, Magnussen IJ, Salvesen ØO, Salvesen HB, Haldorsen IS (2015) Metabolic tumor volume on 18F-FDG PET/CT improves preoperative identification of high-risk endometrial carcinoma patients. J Nucl Med 56(8):1191–1198.  https://doi.org/10.2967/jnumed.115.159913 CrossRefGoogle Scholar
  31. 31.
    Nogami Y, Banno K, Irie H, Iida M, Kisu I, Masugi Y, Tanaka K, Tominaga E, Okuda S, Murakami K, Aoki D (2015) The efficacy of preoperative positron emission tomography-computed tomography (PET-CT) for detection of lymph node metastasis in cervical and endometrial cancer: clinical and pathological factors influencing it. Jpn J Clin Oncol 45(1):26–34.  https://doi.org/10.1093/jjco/hyu161 CrossRefGoogle Scholar
  32. 32.
    Kitajima K, Suenaga Y, Ueno Y, Kanda T, Maeda T, Takahashi S, Ebina Y, Miyahara Y, Yamada H, Sugimura K (2013) Value of fusion of PET and MRI for staging of endometrial cancer: comparison with 18F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI. Eur J Radiol 82(10):1672–1676.  https://doi.org/10.1016/j.ejrad.2013.05.005 CrossRefGoogle Scholar
  33. 33.
    Antonsen SL, Jensen LN, Loft A, Berthelsen AK, Costa J, Tabor A, Qvist I, Hansen MR, Fisker R, Andersen ES, Sperling L, Nielsen AL, Asmussen J, Hogdall E, Fago-Olsen CL, Christensen IJ, Nedergaard L, Jochumsen K, Hogdall C (2013) MRI, PET/CT and ultrasound in the preoperative staging of endometrial—a multicenter prospective comparative study. Gynecol Oncol 128(2):300–308.  https://doi.org/10.1016/j.ygyno.2012.11.025 CrossRefGoogle Scholar
  34. 34.
    Nakamura K, Hongo A, Kodama J, Hiramatsu Y (2011) The measurement of SUVmax of the primary tumor is predictive of prognosis for patients with endometrial cancer. Gynecol Oncol 123(1):82–87.  https://doi.org/10.1016/j.ygyno.2011.06.026 CrossRefGoogle Scholar
  35. 35.
    Suga T, Nakamoto Y, Saga T, Higashi T, Hamanaka Y, Tatsumi M, Hayashida K, Hara T, Konishi I, Fujii S, Togashi K (2011) Clinical value of FDG–PET for preoperative evaluation of endometrial cancer. Ann Nucl Med 25(4):269–275.  https://doi.org/10.1007/s12149-011-0474-2 CrossRefGoogle Scholar
  36. 36.
    Picchio M, Mangili G, Samanes Gajate AM, De Marzi P, Spinapolice EG, Mapelli P, Giovacchini G, Sigismondi C, Vigano R, Sironi S, Messa C (2010) High-grade endometrial cancer: value of [18F]FDG PET/CT in preoperative staging. Nucl Med Commun 31(6):506–512.  https://doi.org/10.1097/MNM.0b013e328337cb47 Google Scholar
  37. 37.
    Klar M, Meyer PT, Hancke K, Brink I, Orlowska-Volk M, Gitsch G, Denschlag D (2010) Evaluation of FDG–PET for detecting lymph node metastasis in uterine corpus cancer. Anticancer Res 30(9):3787–3790Google Scholar
  38. 38.
    Park JY, Kim EN, Kim DY, Suh DS, Kim JH, Kim YM, Kim YT, Nam JH (2008) Comparison of the validity of magnetic resonance imaging and positron emission tomography/computed tomography in the preoperative evaluation of patients with uterine corpus cancer. Gynecol Oncol 108(3):486–492.  https://doi.org/10.1016/j.ygyno.2007.11.044 CrossRefGoogle Scholar
  39. 39.
    Nayot D, Kwon JS, Carey MS, Driedger A (2008) Does preoperative positron emission tomography with computed tomography predict nodal status. Curr Oncol 15(3):123Google Scholar
  40. 40.
    Suzuki R, Miyagi E, Takahashi N, Sukegawa A, Suzuki A, Koike I, Sugiura K, Okamoto N, Inoue T, Hirahara F (2007) Validity of positron emission tomography using fluoro-2-deoxyglucose for the preoperative evaluation of endometrial cancer. Int J Gynecol Cancer 17(4):890–896.  https://doi.org/10.1111/j.1525-1438.2007.00859.x CrossRefGoogle Scholar
  41. 41.
    Angel Chao T-CC, Ng Koon-Kwan, Hsueh Swei, Huang Huei-Jean, Chou Hung-Hsueh, Tsai Chien-Sheng, Yen Tzu-Chen, Tzu-I Wu, Lai Chyong-Huey (2005) 18F-FDG PET in the management of endometrial cancer. Eur J Nucl Med Mol I 33(1):36–44.  https://doi.org/10.1007/s00259-005-1876-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyTianjin Medical University General HospitalTianjinChina

Personalised recommendations