Advertisement

Archives of Gynecology and Obstetrics

, Volume 298, Issue 2, pp 329–336 | Cite as

Foetal thymus size in pregnancies after assisted reproductive technologies

  • Teresa Gabriele Nau
  • Kathrin Oelmeier de Murcia
  • Mareike Möllers
  • Janina Braun
  • Roxanna E. Abhari
  • Johannes Steinhard
  • Matthias Borowski
  • Walter Klockenbusch
  • Ralf Schmitz
Maternal-Fetal Medicine

Abstract

Purpose

The aim of our study was to compare thymus sizes in foetuses conceived using assisted reproductive technologies (ART) to those conceived naturally (control group).

Methods

Sonographic foetal thymus size was assessed retrospectively in 162 pregnancies conceived using ART and in 774 pregnancies conceived naturally. The anteroposterior thymic and the intrathoracic mediastinal diameter were measured to calculate the thymic–thoracic ratio (TT-ratio). The ART cases were subdivided into two groups: (1) intracytoplasmic sperm injection (ICSI; n = 109) and (2) in vitro fertilisation (IVF; n = 53).

Results

The TT-ratio was smaller in pregnancies conceived using ART (p < 0.001). In both ART subgroups (ICSI and IVF), the TT-ratio was lower compared to the control group (p < 0.001). However, no difference between the two subgroups could be detected (p = 0.203).

Conclusions

Our data show reduced thymus size in foetuses conceived using ART compared to controls. These findings indicate that the use of ART may lead to certain deviations in organogenesis.

Keywords

In vitro fertilisation Intracytoplasmic sperm injection Ultrasound Thymus Foetal diagnosis Prenatal ultrasonography Pregnancy 

Notes

Acknowledgements

We thank everyone who voluntarily dedicated their time and effort.

Author contribution

TGN: data collection, data management, data analysis and manuscript writing. KOM: data collection and manuscript editing. MM: data collection and manuscript editing. JB: data collection and manuscript editing. REA: manuscript editing. JS: data collection and manuscript editing. WK: data collection and manuscript editing. MB: statistics and manuscript editing. RS: project construction, data collection and manuscript revision.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Our study was planned in accordance with the Declaration of Helsinki. The institutional review board approved this study and required neither patient approval nor informed consent for our retrospective analysis of data that were obtained using a standard of care clinical protocol.

Human and animal rights

This article does not contain any studies with animals performed by any of the authors.

References

  1. 1.
    Qin J, Liu X, Sheng X, Wang H, Gao S (2016) Assisted reproductive technology and the risk of pregnancy-related complications and adverse pregnancy outcomes in singleton pregnancies: a meta-analysis of cohort studies. Fertil Steril.  https://doi.org/10.1016/j.fertnstert.2015.09.007 Google Scholar
  2. 2.
    Fauser BC, Devroey P, Diedrich K, Balaban B, Bonduelle M, Delemarre-van de Waal HA, Estella C, Ezcurra D, Geraedts JP, Howles CM, Lerner-Geva L, Serna J, Wells D, Evian Annual Reproduction (EVAR) Workshop Group 2011 (2014) Health outcomes of children born after IVF/ICSI: a review of current expert opinion and literature. Reprod Biomed.  https://doi.org/10.1016/j.rbmo.2013.10.013
  3. 3.
    Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, Soderstrom-Anttila V, Nygren KG, Hazekamp J, Bergh C (2013) Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update.  https://doi.org/10.1093/humupd/dms044
  4. 4.
    Hansen M, Kurinczuk JJ, Bower C, Webb S (2002) The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med.  https://doi.org/10.1056/NEJMoa010035 Google Scholar
  5. 5.
    Bloise E, Feuer SK, Rinaudo PF (2014) Comparative intrauterine development and placental function of ART concepti: implications for human reproductive medicine and animal breeding. Hum Reprod Update.  https://doi.org/10.1093/humupd/dmu032 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Royster GD, Krishnamoorthy K, Csokmay JM, Yauger BJ, Chason RJ, DeCherney AH, Wolff EF, Hill MJ (2016) Are intracytoplasmic sperm injection and high serum estradiol compounding risk factors for adverse obstetric outcomes in assisted reproductive technology? Fertil Steril.  https://doi.org/10.1016/j.fertnstert.2016.04.023 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Choux C, Carmignac V, Bruno C, Sagot P, Vaiman D, Fauque P (2015) The placenta: phenotypic and epigenetic modifications induced by assisted reproductive technologies throughout pregnancy. Clin Epigenet.  https://doi.org/10.1186/s13148-015-0120-2 Google Scholar
  8. 8.
    Warby AC, Amler S, Jacobi AM, Hammer K, Mollmann U, Falkenberg MK, Mollers M, Kiesel L, Klockenbusch W, Schmitz R (2014) Imaging of fetal thymus in pregnant women with rheumatic diseases. J Perinat Med.  https://doi.org/10.1515/jpm-2013-0314 PubMedGoogle Scholar
  9. 9.
    Tangshewinsirikul C, Panburana P (2017) Sonographic measurement of fetal thymus size in uncomplicated singleton pregnancies. J Clin Ultrasound.  https://doi.org/10.1002/jcu.22419 PubMedGoogle Scholar
  10. 10.
    Borgelt JM, Mollers M, Falkenberg MK, Amler S, Klockenbusch W, Schmitz R (2016) Assessment of first-trimester thymus size and correlation with maternal diseases and fetal outcome. Acta Obstet Gynecol Scand.  https://doi.org/10.1111/aogs.12790 PubMedGoogle Scholar
  11. 11.
    Zalel Y, Gamzu R, Mashiach S, Achiron R (2002) The development of the fetal thymus: an in utero sonographic evaluation. Prenat Diagn.  https://doi.org/10.1002/pd.257 Google Scholar
  12. 12.
    Dornemann R, Koch R, Mollmann U, Falkenberg MK, Mollers M, Klockenbusch W, Schmitz R (2017) Fetal thymus size in pregnant women with diabetic diseases. J Perinat Med.  https://doi.org/10.1515/jpm-2016-0400 PubMedGoogle Scholar
  13. 13.
    Cromi A, Ghezzi F, Raffaelli R, Bergamini V, Siesto G, Bolis P (2009) Ultrasonographic measurement of thymus size in IUGR fetuses: a marker of the fetal immunoendocrine response to malnutrition. Ultrasound Obstet Gynecol.  https://doi.org/10.1002/uog.6320 PubMedGoogle Scholar
  14. 14.
    El-Haieg DO, Zidan AA, El-Nemr MM (2008) The relationship between sonographic fetal thymus size and the components of the systemic fetal inflammatory response syndrome in women with preterm prelabour rupture of membranes. BJOG.  https://doi.org/10.1111/j.1471-0528.2008.01715.x PubMedGoogle Scholar
  15. 15.
    Yinon Y, Zalel Y, Weisz B, Mazaki-Tovi S, Sivan E, Schiff E, Achiron R (2007) Fetal thymus size as a predictor of chorioamnionitis in women with preterm premature rupture of membranes. Ultrasound Obstet Gynecol.  https://doi.org/10.1002/uog.4022 PubMedGoogle Scholar
  16. 16.
    Chaoui R, Heling KS, Lopez AS, Thiel G, Karl K (2011) The thymic-thoracic ratio in fetal heart defects: a simple way to identify fetuses at high risk for microdeletion 22q11. Ultrasound Obstet Gynecol.  https://doi.org/10.1002/uog.8952 Google Scholar
  17. 17.
    Musilova I, Hornychova H, Kostal M, Jacobsson B, Kacerovsky M (2013) Ultrasound measurement of the transverse diameter of the fetal thymus in pregnancies complicated by the preterm prelabor rupture of membranes. J Clin Ultrasound.  https://doi.org/10.1002/jcu.22027 PubMedGoogle Scholar
  18. 18.
    Zhang X, Zhou X, Li L, Sun M, Gao Q, Zhang P, Tang J, He Y, Zhu D, Xu Z (2016) Chronic hypoxia in pregnancy affects thymus development in Balb/c mouse offspring via IL2 Signaling. Mol Reprod Dev.  https://doi.org/10.1002/mrd.22630 Google Scholar
  19. 19.
    Edwards A, Springett A, Padfield J, Dorling J, Bugg G, Mansell P (2013) Differences in post-mortem findings after stillbirth in women with and without diabetes. Diabet Med.  https://doi.org/10.1111/dme.12272 Google Scholar
  20. 20.
    Eviston DP, Quinton AE, Benzie RJ, Peek MJ, Martin A, Nanan RK (2012) Impaired fetal thymic growth precedes clinical preeclampsia: a case-control study. J Reprod Immunol.  https://doi.org/10.1016/j.jri.2012.04.001 PubMedGoogle Scholar
  21. 21.
    Cho JY, Min JY, Lee YH, McCrindle B, Hornberger LK, Yoo SJ (2007) Diameter of the normal fetal thymus on ultrasound. Ultrasound Obstet Gynecol.  https://doi.org/10.1002/uog.3979 PubMedGoogle Scholar
  22. 22.
    Karl K, Heling KS, Sarut Lopez A, Thiel G, Chaoui R (2012) Thymic-thoracic ratio in fetuses with trisomy 21, 18 or 13. Ultrasound Obstet Gynecol.  https://doi.org/10.1002/uog.11068 Google Scholar
  23. 23.
    Olearo E, Oberto M, Ogge G, Botta G, Pace C, Gaglioti P, Todros T (2012) Thymic volume in healthy, small for gestational age and growth restricted fetuses. Prenat Diagn.  https://doi.org/10.1002/pd.3883 PubMedGoogle Scholar
  24. 24.
    Li L, Bahtiyar MO, Buhimschi CS, Zou L, Zhou QC, Copel JA (2011) Assessment of the fetal thymus by two- and three-dimensional ultrasound during normal human gestation and in fetuses with congenital heart defects. Ultrasound Obstet Gynecol.  https://doi.org/10.1002/uog.8853 Google Scholar
  25. 25.
    Aksakal SE, Kandemir O, Altinbas S, Esin S, Muftuoglu KH (2014) Fetal thymus size as a predictor of histological chorioamnionitis in preterm premature rupture of membranes. J Matern Fetal Neonatal Med.  https://doi.org/10.3109/14767058.2013.850666 PubMedGoogle Scholar
  26. 26.
    Mohamed N, Eviston DP, Quinton AE, Benzie RJ, Kirby AC, Peek MJ, Nanan RK (2011) Smaller fetal thymuses in pre-eclampsia: a prospective cross-sectional study. Ultrasound Obstet Gynecol.  https://doi.org/10.1002/uog.8953 PubMedGoogle Scholar
  27. 27.
    Hanson ML, Brundage KM, Schafer R, Tou JC, Barnett JB (2010) Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development. Toxicol Appl Pharmacol.  https://doi.org/10.1016/j.taap.2009.09.023 PubMedGoogle Scholar
  28. 28.
    Nasseri F, Eftekhari F (2010) Clinical and radiologic review of the normal and abnormal thymus: pearls and pitfalls. Radiographics.  https://doi.org/10.1148/rg.302095131 PubMedGoogle Scholar
  29. 29.
    Hill JR, Burghardt RC, Jones K, Long CR, Looney CR, Shin T, Spencer TE, Thompson JA, Winger QA, Westhusin ME (2000) Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol Reprod 63:1787–1794CrossRefPubMedGoogle Scholar
  30. 30.
    Norwitz ER (2007) Defective implantation and placentation: laying the blueprint for pregnancy complications. Reprod Biomed.  https://doi.org/10.1016/S1472-6483(10)61464-2 Google Scholar
  31. 31.
    Giritharan G, Talbi S, Donjacour A, Di Sebastiano F, Dobson AT, Rinaudo PF (2007) Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction 134:63–72.  https://doi.org/10.1530/rep.06.0247 CrossRefPubMedGoogle Scholar
  32. 32.
    Giritharan G, Li MW, Di Sebastiano F, Esteban FJ, Horcajadas JA, Lloyd KC, Donjacour A, Maltepe E, Rinaudo PF (2010) Effect of ICSI on gene expression and development of mouse preimplantation embryos. Hum Reprod.  https://doi.org/10.1093/humrep/deq266 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Delle Piane L, Lin W, Liu X, Donjacour A, Minasi P, Revelli A, Maltepe E, Rinaudo PF (2010) Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod.  https://doi.org/10.1093/humrep/deq165 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Bloise E, Lin W, Liu X, Simbulan R, Kolahi KS, Petraglia F, Maltepe E, Donjacour A, Rinaudo P (2012) Impaired placental nutrient transport in mice generated by in vitro fertilization. Endocrinology.  https://doi.org/10.1210/en.2011-1921 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Drost M (2007) Complications during gestation in the cow. Theriogenology 68:487–491.  https://doi.org/10.1016/j.theriogenology.2007.04.023 CrossRefPubMedGoogle Scholar
  36. 36.
    Stephenson NR (1959) The effect of salicylates on the thymus gland of the immature rat. J Pharm Pharmacol 11:339–345CrossRefPubMedGoogle Scholar
  37. 37.
    Walker SK, Hartwich KM, Robinson JS (2000) Long-term effects on offspring of exposure of oocytes and embryos to chemical and physical agents. Hum Reprod Update 6:564–577CrossRefPubMedGoogle Scholar
  38. 38.
    Rinaudo PF, Lamb J (2008) Fetal origins of perinatal morbidity and/or adult disease. Semin Reprod Med.  https://doi.org/10.1055/s-0028-1087109 PubMedGoogle Scholar
  39. 39.
    Haavaldsen C, Tanbo T, Eskild A (2012) Placental weight in singleton pregnancies with and without assisted reproductive technology: a population study of 536,567 pregnancies. Hum Reprod.  https://doi.org/10.1093/humrep/der428 PubMedGoogle Scholar
  40. 40.
    de Boo HA, Harding JE (2006) The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol 46:4–14.  https://doi.org/10.1111/j.1479-828X.2006.00506.x CrossRefPubMedGoogle Scholar
  41. 41.
    Meas T (2010) Fetal origins of insulin resistance and the metabolic syndrome: a key role for adipose tissue? Diabetes Metab.  https://doi.org/10.1016/j.diabet.2009.09.001 PubMedGoogle Scholar
  42. 42.
    Rinaudo P, Wang E (2012) Fetal programming and metabolic syndrome. Annu Rev Physiol.  https://doi.org/10.1146/annurev-physiol-020911-153245 PubMedGoogle Scholar
  43. 43.
    Raunig JM, Yamauchi Y, Ward MA, Collier AC (2011) Placental inflammation and oxidative stress in the mouse model of assisted reproduction. Placenta.  https://doi.org/10.1016/j.placenta.2011.08.003 PubMedPubMedCentralGoogle Scholar
  44. 44.
    Salilew-Wondim D, Tesfaye D, Hossain M, Held E, Rings F, Tholen E, Looft C, Cinar U, Schellander K, Hoelker M (2013) Aberrant placenta gene expression pattern in bovine pregnancies established after transfer of cloned or in vitro produced embryos. Physiol Genomics.  https://doi.org/10.1152/physiolgenomics.00076.2012 PubMedGoogle Scholar
  45. 45.
    Zhang Y, Cui Y, Zhou Z, Sha J, Li Y, Liu J (2010) Altered global gene expressions of human placentae subjected to assisted reproductive technology treatments. Placenta.  https://doi.org/10.1016/j.placenta.2010.01.005 PubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Teresa Gabriele Nau
    • 1
  • Kathrin Oelmeier de Murcia
    • 1
  • Mareike Möllers
    • 1
  • Janina Braun
    • 1
  • Roxanna E. Abhari
    • 2
  • Johannes Steinhard
    • 3
  • Matthias Borowski
    • 4
  • Walter Klockenbusch
    • 1
  • Ralf Schmitz
    • 1
  1. 1.Department of Gynecology and ObstetricsUniversity Hospital MünsterMünsterGermany
  2. 2.Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
  3. 3.Department of Fetal CardiologyHeart and Diabetes Center North Rhine-WestphaliaBad OeynhausenGermany
  4. 4.Institute of Biostatistics and Clinical ResearchUniversity of MünsterMünsterGermany

Personalised recommendations