Advertisement

Archives of Gynecology and Obstetrics

, Volume 295, Issue 1, pp 247–252 | Cite as

Biological and biomechanical analysis of two types of mesenchymal stem cells for intervention in chemotherapy-induced ovarian dysfunction

  • Yuan Pan
  • Liqun Zhang
  • Xinyue Zhang
  • Cong Hu
  • Ruizhi LiuEmail author
Gynecologic Endocrinology and Reproductive Medicine

Abstract

Purpose

The study aim was to investigate the biological and biomechanical features of a chemotherapy-induced ovarian dysfunction (CIOD) rat model after intervention with human umbilical cord mesenchymal stem cells (UC-MSCs) and human amniotic mesenchymal stem cells (h-AMSCs), thus providing a biological and biomechanical research basis for clinical treatment.

Methods

The serum levels of estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and vascular endothelial growth factor (VEGF) in the rat CIOD models were evaluated on the 14th, 30th, 60th, and 90th day of intervention with h-AMSCs and UC-MSCs. In addition, the ovaries in each group were sampled on the 14th and 90th day of intervention for tissue morphology and tensile testing.

Results

The serum levels of E2, LH, and VEGF in the h-AMSC and UC-MSC groups were greater than in the model group, but the serum FSH level was less than in the model group, and the differences were significant (P < 0.05); the maximum tensile stress and maximum strain in h-AMSC and UC-MSC groups were significantly greater than in the model group (P < 0.05).

Conclusions

UC-MSC and h-AMSC intervention restored damaged ovarian morphology, elasticity, and toughness to a certain extent, and ovarian function showed some recovery.

Keywords

Rat Ovary Chemotherapy injury UC-MSCs H-AMSCs Intervention Function Mechanical properties 

Notes

Compliance with ethical standards

Ethical approval

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animal use protocol has been reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of Jilin University.

Conflict of interest

All authors have no conflict of interest regarding this paper.

References

  1. 1.
    Fleischer RT, Vollenhoven BJ, Weston GC (2011) The effects of chemotherapy and radiotherapy on fertility in premenopausal women. Obstet Gynecol Surv 66:248–254. doi: 10.1097/OGX.0b013e318224e97b CrossRefPubMedGoogle Scholar
  2. 2.
    Blumenfeld Z (2012) Chemotherapy and fertility. Best Pract Res Clin Obstet Gynaecol 26:379–390. doi: 10.1016/j.bpobgyn.2011.11.008 CrossRefPubMedGoogle Scholar
  3. 3.
    Zervoudis S, Iatrakis G, Navrozoglou I (2010) Reproduction afterbreast cancer. Best Pract Res Clin Obstet Gynaecol 24:81–86. doi: 10.1016/j.bpobgyn.2009.08.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration (2008) Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer systematic review and meta-analysis of individual patient data from 18 randomized rials. J Clin Oncol 26:5802–5812. doi: 10.1200/JCO.2008.16.4368 CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Liu T, Huang Y, Zhang J, Qin W, Chi H, Chen J, Yu Z, Chen C (2014) Transplantation of human menstrual blood stem cells to treat premature ovarian failure inmouse model. Stem Cells Dev 23:1548–1557. doi: 10.1089/scd.2013.0371 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rachakatla RS, Marini F, Weiss ML, Tamura M, Troyer D (2007) Development of human umbilical cord matrix stem cell based gene therapy for experimental lung tumors. Cancer Gene Ther 14:828–835CrossRefPubMedGoogle Scholar
  7. 7.
    Matsuzuka T, Rachakatla RS, Doi C et al (2010) Human umbilical cord matrix-derived stem cells expressing interferon-beta gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer 70:28–36. doi: 10.1016/j.lungcan.2010.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Parolini O, Caruso M (2011) Review: preclinical studies on placenta-derived cells and amniotic membrane: an update. Placenta 32:S186–195. doi: 10.1016/j.placenta.2010.12.016 CrossRefPubMedGoogle Scholar
  9. 9.
    Blumenfeld Z, Dann E, Avivi I, Epelbaum R, Rowe JM (2002) Fertility after treatment for Hodgkins disease. Ann Oncol 13:138–147CrossRefPubMedGoogle Scholar
  10. 10.
    Tlili S, Gay C, Graner F, Marcq P, Molino F, Saramito P (2015) Colloquium: mechanical formalisms for tissue dynamics. Eur Phys J E Soft Mater 38:121. doi: 10.1140/epje/i2015-15033-4 CrossRefGoogle Scholar
  11. 11.
    Pawlaczyk M, Lelonkiewicz M, Wieczorowski M (2013) Age-dependent biomechanical properties of the skin. Postepy Dermatol Alergol 30:302–306. doi: 10.5114/pdia.2013.38359 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fu X, He Y, Xie C, Liu W (2008) Bonem arrowm esenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy induced ovarian damage. Cytotherapy 10:353–363. doi: 10.1080/14653240802035926 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Y, Li ZW, Luo M, Li YJ, Zhang KQ (2015) Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects. Neural Regen Res 10:965–971. doi: 10.4103/1673-5374.158362 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jin H, Yang Q, Ji F, Zhang YJ, Zhao Y, Luo M (2015) Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve: evaluation of nerve viscoelastic properties. Neural Regen Res 10:260–265. doi: 10.4103/1673-5374.152380 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Boote C, Dooley EP, Gardner SJ, Kamma-Lorger CS, Hayes S, Nielsen K, Hjortdal J, Sorensen T, Terrill NJ, Meek KM (2013) Quantification of collagen ultrastructure after penetrating keratoplasty—implications for corneal biomechanics. PLoS One 8:e68166. doi: 10.1371/journal.pone.0068166 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Meirow D, Nugent D (2001) The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update 7:535–543CrossRefPubMedGoogle Scholar
  17. 17.
    Lima AN, Faria AC, Lopes AJ, Jansen JM, Melo PL (2015) Forced oscillations and respiratory system modeling in adults with cystic fibrosis. Biomed Eng Online 14:11. doi: 10.1186/s12938-015-0007-7 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhu SF, Hu HB, Xu HY, Fu XF, Peng DX, Su WY, He YL (2015) Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries. J Cell Mol Med 19:2108–2117. doi: 10.1111/jcmm.12571 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang S, Yu L, Sun M, Mu S, Wang C, Wang D, Yao Y (2013) The therapeutic potential of um-bilical cord mesenchymal stem cells in mice premature ovarianfailure. Biomed Res Int 2013:690491. doi: 10.1155/2013/690491 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24:115–124CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yuan Pan
    • 1
  • Liqun Zhang
    • 1
  • Xinyue Zhang
    • 1
  • Cong Hu
    • 1
  • Ruizhi Liu
    • 1
    Email author
  1. 1.Reproductive CenterThe First Hospital of Jilin UniversityChangchunChina

Personalised recommendations