Archives of Gynecology and Obstetrics

, Volume 294, Issue 2, pp 417–422 | Cite as

Functional histology and possible clinical significance of recently discovered telocytes inside the female reproductive system

  • Ivan Varga
  • Ladislav Urban
  • Marianna Kajanová
  • Štefan Polák
Gynecologic Endocrinology and Reproductive Medicine



Key discoveries of recent years comprise detection of telocytes. These cells of connective tissue have extremely long cytoplasmic processes through which they form functionally connected spatial networks. Through their processes they mutually contact and functionally connect also cells of the immune system, nerve fibres and smooth muscle cells. They are located in various parts of the female reproductive system where they can perform specifically significant functions, which are summarized in our literature review.


Literature regarding "telocytes" and "interstitial Cajal-like cells" was reviewed using scientific databases PubMed/Medline, SCOPUS, and Web of Knowledge.


Among other things telocytes regulate peristaltic muscle movements in the uterine tubes. Their decreased activity, e.g., in inflammatory diseases or endometriosis, causes disorders of a transport function through the uterine tubes resulting in infertility or tubal pregnancy. In the uterine myometrium they are, first, responsible for regulation of muscle contraction (in expelling menstrual blood or in childbirth) and, second, they participate also in immune surveillance during embryo implantation. They likely control also uterine involution post partum. Their function in the vagina has not been elucidated yet, but probably they participate in production of slow contraction waves during sexual intercourse. In the mammary gland their function may be to regulate cellular proliferation and apoptosis, thus they may play a role also in the development and growth of tumours. In the placenta, they may monitor and regulate blood flow through chorionic villi and they participate in aetiopathogenesis of preeclampsia.


However, all above-mentioned functions of telocytes are purely hypothetic and have been published only recently. Therefore, only further research will demonstrate whether this recently discovered cell population will really play a key role in all processes mentioned, or whether it is just an effort of scientists to clarify unknown cause of some diseases in gynaecology and obstetrics. Our literature review is completed by our own original photomicrographs documenting telocytes in various organs of the female reproductive system.


Telocytes Uterus Uterine tube Vagina Mammary gland Placenta 


Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest. This study was not supported by any grants.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Popescu LM, Faussone-Pellegrini MS (2010) TELOCYTES—a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via Interstitial Cajal-like Cells (ICLC) to TELOCYTES. J Cell Mol Med 14:729–740CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Popescu LM, Ciontea SM, Cretoiu D (2007) Interstitial Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci 1101:139–165CrossRefPubMedGoogle Scholar
  3. 3.
    Mou Y, Wang Y, Li J, Lü S, Duan C, Du Z, Yang G, Chen W, Zhao S, Zhou J, Wang C (2013) Immunohistochemical characterization and functional identification of mammary gland telocytes in the self-assembly of reconstituted breast cancer tissue in vitro. J Cell Mol Med 1:65–75CrossRefGoogle Scholar
  4. 4.
    Bosco C, Díaz E, Gutiérrez R, González J, Parra-Cordero M, Rodrigo R, Barja P (2016) Placental hypoxia developed during preeclampsia induces telocytes apoptosis in chorionic villi affecting the maternal-fetus metabolic exchange. Curr Stem Cell Res Ther (Ehead of Print)Google Scholar
  5. 5.
    Bock O (2013) Cajal, Golgi, Nansen, Schäfer and the Neuron Doctrine. Endeavour 37:228–234CrossRefPubMedGoogle Scholar
  6. 6.
    Ramon Y, Cajal S (1911) Histologie du Systeme Nerveux de L´Homme et des Vertebres, vol 2. A. Maloine, ParisGoogle Scholar
  7. 7.
    Faussone Pellegrini MS, Cortesini C, Romagnoli P (1977) Ultrastructure of the tunica muscularis of the cardial portion of the human esophagus and stomach, with special reference to the so-called Cajal’s interstitial cells. Arch Ital Anat Embriol 82:157–177PubMedGoogle Scholar
  8. 8.
    Thuneberg L (1982) Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71:1–130CrossRefPubMedGoogle Scholar
  9. 9.
    Sanders KM, Ward SM, Koh SD (2014) Interstitial cells: regulators of smooth muscle function. Physiol Rev 94:859–907CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hemminger J, Iwenofu OH (2012) Discovered on gastrointestinal stromal tumours 1 (DOG1) expression in non-gastrointestinal stromal tumour (GIST) neoplasms. Histopathology 61:170–177CrossRefPubMedGoogle Scholar
  11. 11.
    Bei Y, Wang F, Yang C, Xiao J (2015) Telocytes in regenerative medicine. J Cell Mol Med 19:1441–1454CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu J, Cao Y, Song Y, Huang Q, Wang F, Yang W, Yang C (2016) Telocytes in liver. Curr Stem Cell Res Ther (Ehead of Print)Google Scholar
  13. 13.
    Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O (2012) Telocytes in human skin—are they involved in skin regeneration? J Cell Mol Med 16:1405–1420CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tao L, Wang H, Wang X, Kong X, Li X (2016) Cardiac telocytes. Curr Stem Cell Res Ther (Ehead of Print)Google Scholar
  15. 15.
    Edelstein L, Smythies J (2014) The role of telocytes in morphogenetic bioelectrical signaling: once more unto the breach. Front Mol Neurosci 7:41PubMedPubMedCentralGoogle Scholar
  16. 16.
    Matyja A, Gil K, Pasternak A, Sztefko K, Gajda M, Tomaszewski KA, Matyja M, Walocha JA, Kulig J, Thor P (2013) Telocytes: new insight into the pathogenesis of gallstone disease. J Cell Mol Med 17:734–742CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rusu MC, Folescu R, Mănoiu VS, Didilescu AC (2014) Suburothelial interstitial cells. Cells Tissues Organs 19:59–72CrossRefGoogle Scholar
  18. 18.
    Ciontea SM, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga RI, Malincenco M, Zagrean L, Hinescu ME, Popescu LM (2005) C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med 9:407–420CrossRefPubMedGoogle Scholar
  19. 19.
    Duquette RA, Shmygol A, Vaillant C, Mobasheri A, Pope M, Burdyga T, Wray S (2005) Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: a role in pacemaking? Biol Reprod 72:276–283CrossRefPubMedGoogle Scholar
  20. 20.
    Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C (2005) Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med 9:479–523CrossRefPubMedGoogle Scholar
  21. 21.
    Shafik A, Shafik AA, El Sibai O, Shafik IA (2005) Specialized pacemaking cells in the human fallopian tube. Mol Hum Reprod 11:503–505CrossRefPubMedGoogle Scholar
  22. 22.
    Shafik A, El-Sibai O, Shafik I, Shafik AA (2005) Immunohistochemical identification of the pacemaker cajal cells in the normal human vagina. Arch Gynecol Obstet 272:13–16CrossRefPubMedGoogle Scholar
  23. 23.
    Popescu LM, Andrei F, Hinescu ME (2005) Snapshots of mammary gland interstitial cells: methylene-blue vital staining and c-kit immunopositivity. J Cell Mol Med 9:476–477CrossRefPubMedGoogle Scholar
  24. 24.
    Suciu L, Popescu LM, Gherghiceanu M (2007) Human placenta: de visu demonstration of interstitial Cajal-like cells. J Cell Mol Med 11:590–597CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Radu E, Regalia T, Ceafalan L, Andrei F, Cretoiu D, Popescu LM (2005) Cajal-type cells from human mammary gland stroma: phenotype characteristics in cell culture. J Cell Mol Med 9:748–752CrossRefPubMedGoogle Scholar
  26. 26.
    Cantarero I, Luesma MJ, Alvarez-Dotu JM, Muñoz E, Junquera C (2016) Transmission electron microscopy as key technique for the characterization of telocytes. Curr Stem Cell Res Ther (Ehead of Print)Google Scholar
  27. 27.
    Urban L, Miko M, Kajanova M, Bozikova S, Mrazova H, Varga I (2016) Telocytes (interstitial Cajal-like cells) in human fallopian tubes. Bratisl Lek Listy 117:263–267PubMedGoogle Scholar
  28. 28.
    Gherghiceanu M, Popescu LM (2005) Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med 9:893–910CrossRefPubMedGoogle Scholar
  29. 29.
    Federative Committee on Anatomical Terminology (2008) Terminologia histologica: international terms for human cytology and histology. Wolters Kluwer/Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  30. 30.
    Allen WE (2009) Terminologia anatomica: international anatomical terminology and terminologia histologica: international terms for human cytology andhistology. J Anat 215(2):221CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Creţoiu SM, Creţoiu D, Popescu LM (2012) Human myometrium—the ultrastructural 3D network of telocytes. J Cell Mol Med 1:2844–2849CrossRefGoogle Scholar
  32. 32.
    Cretoiu D, Ciontea SM, Popescu LM, Ceafalan L, Ardeleanu C (2006) Interstitial Cajal-like cells (ICLC) as steroid hormone sensors in human myometrium: immunocytochemical approach. J Cell Mol Med 10:789–795CrossRefPubMedGoogle Scholar
  33. 33.
    Hutchings G, Williams O, Cretoiu D, Ciontea SM (2009) Myometrial interstitial cells and the coordination of myometrial contractility. J Cell Mol Med 13:4268–4282CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM (2013) Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction 145:357–570CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Popescu LM, Gherghiceanu M, Cretoiu D, Radu E (2005) The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med 3:714–730CrossRefGoogle Scholar
  36. 36.
    Roatesi I, Radu BM, Cretoiu D, Cretoiu SM (2015) Uterine telocytes: a review of current knowledge. Biol Reprod 93:10CrossRefPubMedGoogle Scholar
  37. 37.
    Salama N (2013) Immunohistochemical characterization of telocytes in rat uterus in different reproductive states. Egypt J Histol 36:185–194CrossRefGoogle Scholar
  38. 38.
    Djahanbakhch O, Ezzati M, Saridogan E (2010) Physiology and pathophysiology of tubal transport: ciliary beat and muscular contractility, relevance to tubal infertility, recent research, and future directions. In: Ledger WL, Tan SL, Bahathiq AOS (eds) The Fallopian tube in infertility and IVF practice. Cambridge University Press, Cambridge, pp 19–29Google Scholar
  39. 39.
    Yang XJ, Xu JY, Shen ZJ, Zhao J (2013) Immunohistochemical alterations of cajal-like type of tubal interstitial cells in women with endometriosis and tubal ectopic pregnancy. Arch Gynecol Obstet 288:1295–1300CrossRefPubMedGoogle Scholar
  40. 40.
    Dixon RE, Hwang SJ, Hennig GW, Ramsey KH, Schripsema JH, Sanders KM, Ward SM (2009) Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct. Biol Reprod 8:665–673CrossRefGoogle Scholar
  41. 41.
    Dixon RE, Ramsey KH, Schripsema JH, Sanders KM, Ward SM (2010) Time-dependent disruption of oviduct pacemaker cells by Chlamydia infection in mice. Biol Reprod 8:244–253CrossRefGoogle Scholar
  42. 42.
    Yang J, Chi C, Liu Z, Yang G, Shen ZJ, Yang XJ (2015) Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med 19:1720–1728CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yang XJ, Yang J, Liu Z, Yang G, Shen ZJ (2015) Telocytes damage in endometriosis-affected rat oviduct and potential impact on fertility. J Cell Mol Med 1:452–462CrossRefGoogle Scholar
  44. 44.
    Shafik A, El Sibai O, Shafik AA, Ahmed I, Mostafa RM (2004) The electrovaginogram: study of the vaginal electric activity and its role in the sexual act and disorders. Arch Gynecol Obstet 269:282–286CrossRefPubMedGoogle Scholar
  45. 45.
    Adamkov M, Výbohová D, Horáček J, Kovalská M, Furjelová M (2013) Survivin expression in breast lobular carcinoma: correlations with normal breast tissue and clinicomorphological parameters. Acta Histochem 115:412–417CrossRefPubMedGoogle Scholar
  46. 46.
    Furjelova M, Kovalska M, Jurkova K, Chylikova J, Mestanova V, Adamkov M (2015) Correlation of carbonic anhydrase IX expression with clinico-morphological parameters, hormonal receptor status and HER-2 expression in breast cancer. Neoplasma 62(1):88–97CrossRefPubMedGoogle Scholar
  47. 47.
    Adamkov M, Kajo K, Výbohová D, Krajčovič J, Štuller F, Rajčáni J (2012) Correlations of survivin expression with clinicomorphological parameters and hormonal receptor status in breast ductal carcinoma. Neoplasma 59(1):30–37CrossRefPubMedGoogle Scholar
  48. 48.
    Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME, Faussone-Pellegrini MS (2010) Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs 192:325–339CrossRefPubMedGoogle Scholar
  49. 49.
    Bosco C, Díaz E, Gutiérrez R, González J, Parra-Cordero M, Rodrigo R, Barja P (2015) A putative role for telocytes in placental barrier impairment during preeclampsia. Med Hypotheses 84:72–77CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ivan Varga
    • 1
  • Ladislav Urban
    • 1
    • 2
  • Marianna Kajanová
    • 1
    • 2
  • Štefan Polák
    • 1
  1. 1.Faculty of Medicine, Institute of Histology and EmbryologyComenius University in BratislavaBratislavaSlovakia
  2. 2.Department of Gynaecology and ObstetricsForLife General HospitalKomárnoSlovakia

Personalised recommendations