Archives of Gynecology and Obstetrics

, Volume 293, Issue 5, pp 941–949 | Cite as

Natural Killer T cell subsets in eutopic and ectopic endometrium: a fresh look to a busy corner

  • Antonio Simone Laganà
  • Onofrio Triolo
  • Francesca Maria Salmeri
  • Roberta Granese
  • Vittorio Italo Palmara
  • Helena Ban Frangež
  • Eda Vrtčnik Bokal
  • Vincenza Sofo



Invariant Natural Killer T cells (iNKT) are a specialized subset of T cells that use their T cell receptor to recognize self and foreign lipids presented by CD1d as cognate antigens. iNKT have been shown to have either protective or harmful roles in many pathological states, including microbial infection, autoimmune disease, allergic disease and cancer. Accumulating evidence seems to suggest that this unique T cell subset combines both classically innate and adaptive immunologic characteristic. Considering these recent data, the aim of work was to review the current knowledge about iNKT in eutopic and ectopic endometrium.


Narrative overview, synthesizing the findings of literature retrieved from searches of computerized databases.


Currently, the immune paradigm of reproduction is gradually changing shape: recent data confirmed that cytokine milieu influences the development and plasticity of different subtype of mononuclear cells, and in turn it can be influenced by the cytokine production of the latter. Among the different NKT cell populations, the recently characterized iNKT seems to share actions typical both of innate and adaptive immunity, being capable of secreting Th1 as well as Th2 cytokine pattern. Moreover, several subtypes of iNKT were identified, who partially express the same master transcription factors of the corresponding T cells counterpart.


Although the data about iNKT’s actions in eutopic and ectopic endometrium are still scarce, it is possible to hypothesize that future investigation can shed light on this point, thus allowing a better knowledge about the regulation of these two microenvironments.


Invariant natural killer T cells Immunity Endometrium Endometriosis 


Compliance with ethical standards

Conflict of interest

The authors have no proprietary, financial, professional or other personal interest of any nature in any product, service or company. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    Ivanov S, Paget C, Trottein F (2014) Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 10:e1004300. doi: 10.1371/journal.ppat.1004300 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890. doi: 10.1146/annurev.immunol.22.012703.104608 PubMedCrossRefGoogle Scholar
  3. 3.
    Borg NA, Wun KS, Kjer-Nielsen L et al (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448:44–49. doi: 10.1038/nature05907 PubMedCrossRefGoogle Scholar
  4. 4.
    Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13:101–117. doi: 10.1038/nri3369 PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen NR, Brennan PJ, Shay T et al (2013) Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nat Immunol 14:90–99. doi: 10.1038/ni.2490 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Tyznik AJ, Tupin E, Nagarajan NA et al (2008) Cutting edge: the mechanism of invariant NKT cell responses to viral danger signals. J Immunol 181:4452–4456PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sköld M, Stenström M, Sidobre S et al (2003) MHC-dependent and -independent modulation of endogenous Ly49 receptors on NK1.1+ T lymphocytes directed by T-cell receptor type. Immunology 110:313–321. doi: 10.1046/j.1365-2567.2003.01741.x PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Godfrey DI, Rossjohn J (2011) New ways to turn on NKT cells. J Exp Med 208:1121–1125. doi: 10.1084/jem.20110983 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L (2008) CD1d-restricted iNKT cells, the “Swiss-Army knife” of the immune system. Curr Opin Immunol 20:358–368. doi: 10.1016/j.coi.2008.03.018 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278:1626–1629. doi: 10.1126/science.278.5343.1626 PubMedCrossRefGoogle Scholar
  11. 11.
    Lee PT, Benlagha K, Teyton L, Bendelac A (2002) Distinct functional lineages of human V(α)24 natural killer T cells. J Exp Med 195:637–641. doi: 10.1084/jem.20011908 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636. doi: 10.1084/jem.20011786 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336. doi: 10.1146/annurev.immunol.25.022106.141711 PubMedCrossRefGoogle Scholar
  14. 14.
    Kain L, Costanzo A, Webb B et al (2015) Endogenous ligands of natural killer T cells are alpha-linked glycosylceramides. Mol Immunol 68:94–97. doi: 10.1016/j.molimm.2015.06.009 PubMedCrossRefGoogle Scholar
  15. 15.
    Watarai H, Sekine-Kondo E, Shigeura T et al (2012) Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines. PLoS Biol 10:e1001255. doi: 10.1371/journal.pbio.1001255 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yu ED, Girardi E, Wang J, Zajonc DM (2011) Cutting edge: structural basis for the recognition of β-linked glycolipid antigens by invariant NKT cells. J Immunol 187:2079–2083. doi: 10.4049/jimmunol.1101636 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bai L, Constantinides MG, Thomas SY et al (2012) Distinct APCs explain the cytokine bias of α-galactosylceramide variants in vivo. J Immunol 188:3053–3061. doi: 10.4049/jimmunol.1102414 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Taniguchi M, Tashiro T, Dashtsoodol N et al (2009) The specialized iNKT cell system recognizes glycolipid antigens and bridges the innate and acquired immune systems with potential applications for cancer therapy. Int Immunol 22:1–6. doi: 10.1093/intimm/dxp104 PubMedCrossRefGoogle Scholar
  19. 19.
    Brigl M, Bry L, Kent SC et al (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237. doi: 10.1038/ni1002 PubMedCrossRefGoogle Scholar
  20. 20.
    Van Kaer L, Parekh VV, Wu L (2011) Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res 343:43–55. doi: 10.1007/s00441-010-1023-3 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nagarajan NA, Kronenberg M (2007) Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 178:2706–2713. doi: 10.4049/jimmunol.178.5.2706 PubMedCrossRefGoogle Scholar
  22. 22.
    Salio M, Speak AO, Shepherd D et al (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 104:20490–20495. doi: 10.1073/pnas.0710145104 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tupin E, Kinjo Y, Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5:405–417. doi: 10.1038/nrmicro1657 PubMedCrossRefGoogle Scholar
  24. 24.
    Kinjo Y, Kitano N, Kronenberg M (2013) The role of invariant natural killer T cells in microbial immunity. J Infect Chemother 19:560–570. doi: 10.1007/s10156-013-0638-1 PubMedCrossRefGoogle Scholar
  25. 25.
    Kim EY, Battaile JT, Patel AC et al (2008) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14:633–640. doi: 10.1038/nm1770 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Van Kaer L, Parekh VV, Wu L (2013) Invariant natural killer T cells as sensors and managers of inflammation. Trends Immunol 34:50–58. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Scott-Browne JP, Matsuda JL, Mallevaey T et al (2007) Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat Immunol 8:1105–1113. doi: 10.1038/ni1510 PubMedCrossRefGoogle Scholar
  28. 28.
    Arrenberg P, Halder R, Dai Y et al (2010) Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid. Proc Natl Acad Sci USA 107:10984–10989. doi: 10.1073/pnas.1000576107 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rossjohn J, Pellicci DG, Patel O et al (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 12:845–857. doi: 10.1038/nri3328 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Rhost S, Löfbom L, Rynmark BM et al (2012) Identification of novel glycolipid ligands activating a sulfatide-reactive, CD1d-restricted, type II natural killer T lymphocyte. Eur J Immunol 42:2851–2860. doi: 10.1002/eji.201142350 PubMedCrossRefGoogle Scholar
  31. 31.
    Berzofsky JA, Terabe M (2009) The contrasting roles of NKT cells in tumor immunity. Curr Mol Med 9:667–672PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Thomas SY, Hou R, Boyson JE et al (2003) CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J Immunol 171:2571–2580. doi: 10.4049/jimmunol.171.5.2571 PubMedCrossRefGoogle Scholar
  33. 33.
    Doisne J-M, Becourt C, Amniai L et al (2009) Skin and peripheral lymph node invariant NKT cells are mainly retinoic acid receptor-related orphan receptor γt+ and respond preferentially under inflammatory conditions. J Immunol 183:2142–2149. doi: 10.4049/jimmunol.0901059 PubMedCrossRefGoogle Scholar
  34. 34.
    Scanlon ST, Thomas SY, Ferreira CM et al (2011) Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation. J Exp Med 208:2113–2124. doi: 10.1084/jem.20110522 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Berzins SP, Smyth MJ, Baxter AG (2011) Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol 11:131–142. doi: 10.1038/nri2904 PubMedCrossRefGoogle Scholar
  36. 36.
    Thomas SY, Scanlon ST, Griewank KG et al (2011) PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J Exp Med 208:1179–1188. doi: 10.1084/jem.20102630 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Field JJ, Nathan DG, Linden J (2011) Targeting iNKT cells for the treatment of sickle cell disease. Clin Immunol 140:177–183. doi: 10.1016/j.clim.2011.03.002 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hansen CHF, Nielsen DS, Kverka M et al (2012) Patterns of early gut colonization shape future immune responses of the host. PLoS One. doi: 10.1371/journal.pone.0034043 Google Scholar
  39. 39.
    Chang YJ, Kim HY, Albacker LA et al (2011) Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J Clin Invest 121:57–69. doi: 10.1172/JCI44845 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yuan J, Nguyen CK, Liu X et al (2012) Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 335:1195–1200. doi: 10.1126/science.1216557
  41. 41.
    Darmoise A, Teneberg S, Bouzonville L et al (2010) Lysosomal α-galactosidase controls the generation of self lipid antigens for natural killer T cells. Immunity 33:216–228. doi: 10.1016/j.immuni.2010.08.003 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rachitskaya AV, Hansen AM, Horai R et al (2008) Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J Immunol 180:5167–5171. doi: 10.4049/jimmunol.180.8.5167 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Schipper HS, Rakhshandehroo M, van de Graaf SFJ et al (2012) Natural killer T cells in adipose tissue prevent insulin resistance. J Clin Invest 122:3343–3354. doi: 10.1172/JCI62739 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lynch L, Nowak M, Varghese B et al (2012) Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37:574–587. doi: 10.1016/j.immuni.2012.06.016 PubMedCrossRefGoogle Scholar
  45. 45.
    Bosma A, Abdel-Gadir A, Isenberg DA et al (2012) Lipid-antigen presentation by CD1d(+) B cells is essential for the maintenance of invariant natural killer T cells. Immunity 36:477–490. doi: 10.1016/j.immuni.2012.02.008 PubMedCrossRefGoogle Scholar
  46. 46.
    King IL, Fortier A, Tighe M et al (2011) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol 13:44–50. doi: 10.1038/ni.2172 PubMedCrossRefGoogle Scholar
  47. 47.
    Monteiro M, Almeida CF, Caridade M et al (2010) Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. J Immunol 185:2157–2163. doi: 10.4049/jimmunol.1000359 PubMedCrossRefGoogle Scholar
  48. 48.
    Bezbradica JS, Stanic AK, Matsuki N et al (2005) Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J Immunol 174:4696–4705. doi: 10.4049/jimmunol.174.8.4696 PubMedCrossRefGoogle Scholar
  49. 49.
    Fujii S-I, Liu K, Smith C et al (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618. doi: 10.1084/jem.20040317 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Brigl M, Tatituri RVV, Watts GFM et al (2011) Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med 208:1163–1177. doi: 10.1084/jem.20102555 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Schmieg J, Yang G, Franck RW et al (2005) Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc Natl Acad Sci USA 102:1127–1132. doi: 10.1073/pnas.0408288102 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sada-Ovalle I, Chiba A, Gonzales A et al (2008) Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog 4:e1000239. doi: 10.1371/journal.ppat.1000239 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nieuwenhuis EES, Matsumoto T, Exley M et al (2002) CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat Med 8:588–593. doi: 10.1038/nm0602-588 PubMedCrossRefGoogle Scholar
  54. 54.
    Metelitsa LS (2011) Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin Immunol 140:119–129. doi: 10.1016/j.clim.2010.10.005 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Vomhof-DeKrey EE, Yates J, Leadbetter EA (2014) Invariant NKT cells provide innate and adaptive help for B cells. Curr Opin Immunol 28:12–17. doi: 10.1016/j.coi.2014.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vomhof-DeKrey EE, Yates J, Hägglöf T et al (2015) Cognate interaction with iNKT cells expands IL-10-producing B regulatory cells. Proc Natl Acad Sci USA 112:12474–12479. doi: 10.1073/pnas.1504790112 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Dellabona P, Abrignani S, Casorati G (2014) iNKT cell help to B cells: a cooperative job between innate and adaptive immune responses. Eur J Immunol. doi: 10.1002/eji.201344399.This
  58. 58.
    Lappas CM, Day Y-J, Marshall MA et al (2006) Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 203:2639–2648. doi: 10.1084/jem.20061097 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kawakami K, Yamamoto N, Kinjo Y et al (2003) Critical role of Vα14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 33:3322–3330. doi: 10.1002/eji.200324254 PubMedCrossRefGoogle Scholar
  60. 60.
    De Santo C, Arscott R, Booth S et al (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11:1039–1046. doi: 10.1038/ni.1942 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Guerin LR, Prins JR, Robertson SA (2009) Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 15:517–535. doi: 10.1093/humupd/dmp004 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Munoz-Suano A, Hamilton AB, Betz AG (2011) Gimme shelter: the immune system during pregnancy. Immunol Rev 241:20–38. doi: 10.1111/j.1600-065X.2011.01002.x PubMedCrossRefGoogle Scholar
  63. 63.
    Faulk WP, Temple A (1976) Distribution of β2 microglobulin and HLA in chorionic villi of human placentae. Nature 262:799–802. doi: 10.1038/260170a0 PubMedCrossRefGoogle Scholar
  64. 64.
    King A, Boocock C, Sharkey AM et al (1996) Evidence for the expression of HLAA-C class I mRNA and protein by human first trimester trophoblast. J Immunol 156:2068–2076. doi: 10.1016/0165-0378(96)87783-7 PubMedGoogle Scholar
  65. 65.
    Kovats S, Main EK, Librach C et al (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223. doi: 10.1126/science.2326636 PubMedCrossRefGoogle Scholar
  66. 66.
    Raghupathy R, Makhseed M, Azizieh F et al (1999) Maternal Th1- and Th2-type reactivity to placental antigens in normal human pregnancy and unexplained recurrent spontaneous abortions. Cell Immunol 196:122–130. doi: 10.1006/cimm.1999.1532 PubMedCrossRefGoogle Scholar
  67. 67.
    Vince GS, Johnson PM (2000) Leucocyte populations and cytokine regulation in human uteroplacental tissues. Biochem Soc Trans 28:191–195PubMedCrossRefGoogle Scholar
  68. 68.
    Raghupathy R (1997) Th1-type immunity is incompatible with successful pregnancy. Immunol Today 18:478–482. doi: 10.1016/S0167-5699(97)01127-4 PubMedCrossRefGoogle Scholar
  69. 69.
    Wegmann TG, Lin H, Guilbert L, Mosmann TR (1993) Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14:353–356. doi: 10.1016/0167-5699(93)90235-D PubMedCrossRefGoogle Scholar
  70. 70.
    Saito S, Shima T, Inada K, Nakashima A (2013) Which types of regulatory T cells play important roles in implantation and pregnancy maintenance? Am J Reprod Immunol 69:340–345. doi: 10.1111/aji.12101 PubMedCrossRefGoogle Scholar
  71. 71.
    Somerset DA, Zheng Y, Kilby MD et al (2004) Normal human pregnancy is associated with an elevation in the immune suppressive CD25 + CD4 + regulatory T-cell subset. Immunology 112:38–43. doi: 10.1111/j.1365-2567.2004.01869.x
  72. 72.
    Pot C, Apetoh L, Kuchroo VK (2011) Type 1 regulatory T cells (Tr1) in autoimmunity. Semin Immunol 23:202–208. doi: 10.1016/j.biotechadv.2011.08.021.Secreted PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Roncarolo MG, Gregori S, Bacchetta R, Battaglia M (2014) Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol 380:39–68. doi: 10.1007/978-3-662-43492-5_3 PubMedGoogle Scholar
  74. 74.
    Gregori S, Tomasoni D, Pacciani V et al (2010) Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood 116:935–944. doi: 10.1182/blood-2009-07-234872 PubMedCrossRefGoogle Scholar
  75. 75.
    Arruvito L, Sotelo AI, Billordo A, Fainboim L (2010) A physiological role for inducible FOXP3(+) Treg cells. Lessons from women with reproductive failure. Clin Immunol 136:432–441. doi: 10.1016/j.clim.2010.05.002 PubMedCrossRefGoogle Scholar
  76. 76.
    Jiang SP, Vacchio MS (1998) Multiple mechanisms of peripheral T cell tolerance to the fetal “allograft”. J Immunol 160:3086–3090PubMedGoogle Scholar
  77. 77.
    Tafuri A, Alferink J, Möller P et al (1995) T cell awareness of paternal alloantigens during pregnancy. Science 270:630–633. doi: 10.1126/science.270.5236.630 PubMedCrossRefGoogle Scholar
  78. 78.
    Hunt JS, Vassmer D, Ferguson TA, Miller L (1997) Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J Immunol (Baltimore, Md 1950) 158:4122–4128Google Scholar
  79. 79.
    King A, Burrows T, Verma S et al (1998) Human uterine lymphocytes. Hum Reprod Update 4:480–485. doi: 10.1093/humupd/4.5.480 PubMedCrossRefGoogle Scholar
  80. 80.
    Mincheva-Nilsson L, Hammarström S, Hammarström ML (1992) Human decidual leukocytes from early pregnancy contain high numbers of gamma delta + cells and show selective down-regulation of alloreactivity. J Immunol 149:2203–2211PubMedGoogle Scholar
  81. 81.
    Bulmer JN, Williams PJ, Lash GE (2010) Immune cells in the placental bed. Int J Dev Biol 54:281–294. doi: 10.1387/ijdb.082763jb PubMedCrossRefGoogle Scholar
  82. 82.
    Uemura Y, Suzuki M, Liu T-Y et al (2008) Role of human non-invariant NKT lymphocytes in the maintenance of type 2 T helper environment during pregnancy. Int Immunol 20:405–412. doi: 10.1093/intimm/dxn001 PubMedCrossRefGoogle Scholar
  83. 83.
    Boyson JE, Rybalov B, Koopman LA et al (2002) CD1d and invariant NKT cells at the human maternal-fetal interface. Proc Natl Acad Sci USA 99:13741–13746. doi: 10.1073/pnas.162491699 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dang Y, Heyborne KD (2001) Cutting edge: regulation of uterine NKT cells by a fetal class I molecule other than CD1. J Immunol 166:3641–3644PubMedCrossRefGoogle Scholar
  85. 85.
    Huang Y, Zhu XY, Du MR, Li DJ (2008) Human trophoblasts recruited T lymphocytes and monocytes into decidua by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy. J Immunol (Baltimore, Md 1950) 180:2367–2375. doi: 10.4049/jimmunol.180.4.2367
  86. 86.
    Ito K, Karasawa M, Kawano T et al (2000) Involvement of decidual Vα14 NKT cells in abortion. Proc Natl Acad Sci USA 97:740–744PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Jakovac H, Grebic D, Grubic-Kezele T et al (2013) Endoplasmic reticulum resident heat shock protein-gp96 as morphogenetic and immunoregulatory factor in syngeneic pregnancy. Histol Histopathol 28:1285–1298PubMedGoogle Scholar
  88. 88.
    Hurtado CW, Golden-mason L, Brocato M et al (2010) Innate immune function in placenta and cord blood of hepatitis C-seropositive mother-infant dyads. PLoS ONE 5:e12232. doi: 10.1371/journal.pone.0012232 PubMedCrossRefGoogle Scholar
  89. 89.
    Krízan J, Cuchalová L, Síma P et al (2009) Altered distribution of NK and NKT cells in follicular fluid is associated with IVF outcome. J Reprod Immunol 82:84–88. doi: 10.1016/j.jri.2009.05.005 PubMedCrossRefGoogle Scholar
  90. 90.
    Fukui A, Fujii S, Yamaguchi E et al (1999) Natural killer cell subpopulations and cytotoxicity for infertile patients undergoing in vitro fertilization. Am J Reprod Immunol 41:413–422PubMedCrossRefGoogle Scholar
  91. 91.
    Coulam CB, Roussev RG (2003) Increasing circulating T-cell activation markers are linked to subsequent implantation failure after transfer of in vitro fertilized embryos. Am J Reprod Immunol 50:340–345PubMedCrossRefGoogle Scholar
  92. 92.
    Dosiou C, Giudice LC (2005) Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev 26:44–62. doi: 10.1210/er.2003-0021 PubMedCrossRefGoogle Scholar
  93. 93.
    Maeda N, Izumiya C, Yamamoto Y et al (2002) Increased killer inhibitory receptor KIR2DL1 expression among natural killer cells in women with pelvic endometriosis. Fertil Steril 77:297–302PubMedCrossRefGoogle Scholar
  94. 94.
    Yang JH, Chen MJ, Chen HF et al (2004) Decreased expression of killer cell inhibitory receptors on natural killer cells in eutopic endometrium in women with adenomyosis. Hum Reprod 19:1974–1978. doi: 10.1093/humrep/deh372 PubMedCrossRefGoogle Scholar
  95. 95.
    Yang OO, Racke FK, Nguyen PT et al (2000) CD1d on myeloid dendritic cells stimulates cytokine secretion from and cytolytic activity of Vα24JαQ T cells: a feedback mechanism for immune regulation. J Immunol 165:3756–3762. doi: 10.4049/jimmunol.165.7.3756 PubMedCrossRefGoogle Scholar
  96. 96.
    Arruvito L, Sanz M, Banham AH, Fainboim L (2007) Expansion of CD4+ CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol 178:2572–2578. doi: 10.4049/jimmunol.178.4.2572 PubMedCrossRefGoogle Scholar
  97. 97.
    Peralta CG, Han VK, Horrocks J et al (2008) CD56bright cells increase expression of α4 integrin at ovulation in fertile cycles. J Leukoc Biol 84:1065–1074. doi: 10.1189/jlb.0308164 PubMedCrossRefGoogle Scholar
  98. 98.
    Shimada S, Nishida R, Takeda M et al (2006) Natural killer, natural killer T, helper and cytotoxic T cells in the decidua from sporadic miscarriage. Am J Reprod Immunol 56:193–200. doi: 10.1111/j.1600-0897.2006.00417.x PubMedCrossRefGoogle Scholar
  99. 99.
    Shimada S, Kato EH, Morikawa M et al (2004) No difference in natural killer or natural killer T-cell population, but aberrant T-helper cell population in the endometrium of women with repeated miscarriage. Hum Reprod 19:1018–1024. doi: 10.1093/humrep/deh159 PubMedCrossRefGoogle Scholar
  100. 100.
    Szereday L, Miko E, Meggyes M et al (2012) Commitment of decidual haematopoietic progenitor cells in first trimester pregnancy. Am J Reprod Immunol 67:9–16. doi: 10.1111/j.1600-0897.2011.01029.x PubMedCrossRefGoogle Scholar
  101. 101.
    Li LP, Fang YC, Dong GF et al (2012) Depletion of invariant NKT cells reduces inflammation-induced preterm delivery in mice. J Immunol 188:4681–4689. doi: 10.4049/jimmunol.1102628 PubMedCrossRefGoogle Scholar
  102. 102.
    Ling B, Yao F, Zhou Y et al (2007) Cell-mediated immunity imbalance in patients with intrahepatic cholestasis of pregnancy. Cell Mol Immunol 4:71–75Google Scholar
  103. 103.
    Markel G, Wolf D, Hanna J et al (2002) Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. J Clin Invest 110:943–953. doi: 10.1172/JCI200215643 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Giudice LC, Kao LC (2004) Endometriosis. Lancet 364:1789–1799. doi: 10.1016/S0140-6736(04)17403-5 PubMedCrossRefGoogle Scholar
  105. 105.
    Triolo O, Laganà AS, Sturlese E (2013) Chronic pelvic pain in endometriosis: an overview. J Clin Med Res 5:153–163PubMedPubMedCentralGoogle Scholar
  106. 106.
    Laganà AS, Condemi I, Retto G et al (2015) Analysis of psychopathological comorbidity behind the common symptoms and signs of endometriosis. Eur J Obstet Gynecol Reprod Biol 194:30–33. doi: 10.1016/j.ejogrb.2015.08.015 PubMedCrossRefGoogle Scholar
  107. 107.
    Greco E, Pellicano M, Di Spiezio Sardo A et al (2004) Etiopathogenesis of endometriosis related infertility. Minerva Ginecol 56:259–270PubMedGoogle Scholar
  108. 108.
    Pellicano M, Bramante S, Guida M et al (2008) Ovarian endometrioma: postoperative adhesions following bipolar coagulation and suture. Fertil Steril 89:796–799. doi: 10.1016/j.fertnstert.2006.11.201 PubMedCrossRefGoogle Scholar
  109. 109.
    Laganà AS, Sturlese E, Retto G et al (2013) Interplay between misplaced müllerian-derived stem cells and peritoneal immune dysregulation in the pathogenesis of endometriosis. Obstet Gynecol Int 2013:527041. doi: 10.1155/2013/527041 PubMedPubMedCentralGoogle Scholar
  110. 110.
    Salmeri FM, Lagana AS, Sofo V et al (2015) Behavior of tumor necrosis factor- and tumor necrosis factor receptor 1/tumor necrosis factor receptor 2 system in mononuclear cells recovered from peritoneal fluid of women with endometriosis at different stages. Reprod Sci 22:165–172. doi: 10.1177/1933719114536472
  111. 111.
    Sturlese E, Salmeri FM, Retto G et al (2011) Dysregulation of the Fas/FasL system in mononuclear cells recovered from peritoneal fluid of women with endometriosis. J Reprod Immunol 92:74–81PubMedCrossRefGoogle Scholar
  112. 112.
    Sofo V, Götte M, Laganà AS et al (2015) Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet. doi: 10.1007/s00404-015-3739-5 Google Scholar
  113. 113.
    Provinciali M, Di Stefano G, Muzzioli M et al (1995) Relationship between 17-beta-estradiol and prolactin in the regulation of natural killer cell activity during progression of endometriosis. J Endocrinol Invest 18:645–652PubMedCrossRefGoogle Scholar
  114. 114.
    Garzetti GG, Ciavattini A, Provinciali M et al (1993) Natural killer cell activity in endometriosis: correlation between serum estradiol levels and cytotoxicity. Obs Gynecol 81:665–668Google Scholar
  115. 115.
    Polanczyk MJ, Hopke C, Huan J et al (2005) Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. J Neuroimmunol 170:85–92. doi: 10.1016/j.jneuroim.2005.08.023 PubMedCrossRefGoogle Scholar
  116. 116.
    Polanczyk MJ, Hopke C, Vandenbark AA, Offner H (2007) Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol 19:337–343. doi: 10.1093/intimm/dxl151 PubMedCrossRefGoogle Scholar
  117. 117.
    Guo S, Zhang Y, Wang L, Qiu W (2012) Association of natural killer T cells with staging of endometriosis. Nan Fang Yi Ke Da Xue Xue Bao 32:1322–1324PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Antonio Simone Laganà
    • 1
  • Onofrio Triolo
    • 1
  • Francesca Maria Salmeri
    • 2
  • Roberta Granese
    • 1
  • Vittorio Italo Palmara
    • 1
  • Helena Ban Frangež
    • 3
  • Eda Vrtčnik Bokal
    • 3
  • Vincenza Sofo
    • 2
  1. 1.Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”University of MessinaMessinaItaly
  2. 2.Department of Biomedical Sciences, Dentistry and Morphological and Functional ImagingUniversity of Messina98125Italy
  3. 3.Department of ReproductionUniversity Medical Center LjubljanaLjubljanaSlovenia

Personalised recommendations