Archives of Gynecology and Obstetrics

, Volume 293, Issue 4, pp 857–863 | Cite as

Simultaneous detection of human papillomavirus integration and c-MYC gene amplification in cervical lesions: an emerging marker for the risk to progression

  • Fabrícia Gimenes
  • Raquel Pantarotto Souza
  • André Luelsdorf Pimenta de Abreu
  • Monalisa Wolski Pereira
  • Marcia Edilaine Lopes Consolaro
  • Vânia Ramos Sela da Silva
Gynecologic Oncology

Abstract

Purpose

The persistence of high-risk oncogenic human papillomavirus (HR-HPV) infection and its integration into the host genome are key steps in the induction of malignant alterations. c-MYC chromosome region is a frequent localization for HPV insertion that has been observed in chromosome band 8q24 by fluorescence in situ hybridization (FISH). We report the HPV viral integration and amplification patterns of the c-MYC gene in cytological smears with FISH as a potential biomarker for the progression of squamous intraepithelial lesions (SIL).

Methods

HPV detection and genotyping by polymerase chain reaction (PCR) and FISH analysis by “Vysis Cervical FISH Probe” kit (ABBOTT Molecular Inc.) were performed in 37 cervical samples including 8 NILM, 7 ASC-US, 7 LSIL, 3 ASC-H, 7 HSIL and 5 SCC.

Results

The results show concordance between FISH and PCR techniques for HPV detection. The majority of the samples contained HR-HPV, the majority being -16 and -18 genotypes. HPV integration as determined by FISH was most frequent in high-risk lesions. The c-MYC gene amplification was found only in HPV-positive samples and was detected primarily in high-risk lesions and in cells with an integrated form of HPV.

Conclusions

HPV integration and c-MYC gene amplification detected by FISH could be an important biomarker for use in clinical practice to determine SIL with a risk of progression.

Keywords

Human papillomavirus Cervical cancer Integration c-MYC Biomarkers 

References

  1. 1.
    Trottier H, Franco EL (2006) The epidemiology of genital human papillomavirus infection. Vaccine 24:15CrossRefGoogle Scholar
  2. 2.
    Termini L, Villa LL (2008) Biomarkers in screening of Cervical Cancer. J Bras Doenças Sex Transm 20:125–131Google Scholar
  3. 3.
    Wentzensen N, Klug SJ (2009) Cervical cancer control in the era of HPV vaccination and novel biomarkers. Pathobiology 76:82–89CrossRefPubMedGoogle Scholar
  4. 4.
    Chow LT, Broker TR, Steinberg BM (2010) The natural history of human papillomavirus infections of the mucosal epithelia. APMIS 118:422–449CrossRefPubMedGoogle Scholar
  5. 5.
    Consolaro MEL, Maria-Engler SS (2012) Citologia Clínica Cérvico-vaginal: texto e atlas. Editora Roca, São PauloGoogle Scholar
  6. 6.
    Wentzensen N, Vinokurova S, Von Knebel Doeberitz M (2004) Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Câncer Res 64:3878–3884CrossRefPubMedGoogle Scholar
  7. 7.
    Xu B, Chotewutmontri S, Wolf S et al (2013) Multiplex identification of human papillomavirus 16 DNA integration sites in cervical carcinomas. PLoS ONE 8:e66693CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cai Q, Lv L, Shao Q, Li X, Dian A (2013) Human papillomavirus early proteins and apoptosis. Arch Gynecol Obstet 287(3):541–548. doi:10.1007/s00404-012-2665-z CrossRefPubMedGoogle Scholar
  9. 9.
    Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Ver Cell Dev Biol 16:653–699CrossRefGoogle Scholar
  10. 10.
    Policht FA, Song M, Sitailo S et al (2010) Analysis of genetic copy number changes in cervical disease progression. BMC Cancer 10:432CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kübler K, Heinenberg S, Rudlowski C, Keyver-Paik MD, Abramian A, Merkelbach-Bruse S, Schildhaus HU (2015) c-myc copy number gain is a powerful prognosticator of disease outcome in cervical dysplasia. Oncotarget 6(2):825–835CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Peter M, Rosty C, Couturier J, Radvanyi F, Teshima H, Sastre-Garau X (2006) MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene 25:5985–5993CrossRefPubMedGoogle Scholar
  13. 13.
    Yu T, Ferber MJ, Cheung TH, Chung TK, Wong YF, Smith DI (2005) The role of viral integration in the development of cervical cancer. Cancer Genet Cytogenet 158:27–34CrossRefPubMedGoogle Scholar
  14. 14.
    Sokolova I, Algeciras-Schimnich A, Song M (2007) Chromosomal biomarkers for detection of human papillomavirus associated genomic instability in epithelial cells of cervical cytology specimens. J Mol Diagn 9:604–611CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Muñoz N (2009) Human papillomavirus and cancer: the epidemiological evidence. J Clin Virol 19:1–5CrossRefGoogle Scholar
  16. 16.
    Solomon D, Nayar R (2005) Sistema Bethesda para Citopatologia Cervicovaginal—Definições. Critérios e Notas Explicativas, RevinterGoogle Scholar
  17. 17.
    Manos MM, Waldman J, Zhang TY et al (1994) Epidemiology and partial nucleotide sequence of four novel genital human papillomaviruses. J Infect Dis 170:1096–1099CrossRefPubMedGoogle Scholar
  18. 18.
    Santiago E, Camacho L, Junquera ML, Vázquez F (2006) Full HPV typing by a single restriction enzyme. J Clin Virol 37:38–46CrossRefPubMedGoogle Scholar
  19. 19.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2009) A review of human carcinogens. Part B biological agents, LyonGoogle Scholar
  20. 20.
    Moukova L, Vranova V, Slamova I, Kissova M, Kuglik P (2012) Initial experience with determination of hTERC and MYCC amplification in cervical intraepithelial neoplasia and cervical carcinoma in the Czech Republic. Eur Oncol Haematol 8:92–96CrossRefGoogle Scholar
  21. 21.
    Obermann EC, Savic Prince S, Barascud A et al (2013) Prediction of outcome in patients with low-grade squamous intraepithelial lesions by fluorescence in situ hybridization analysis of human papillomavirus, TERC, and MYC. Cancer Cytopathol 121:423–431CrossRefPubMedGoogle Scholar
  22. 22.
    García DA, Briceño I, Castillo M, Aristizábal FA (2011) Detection of gene amplification in MYCN, C-MYC, MYCL1, ERBB2, EGFR, AKT2, and human papilloma virus in samples from cervical smear normal cytology, intraepithelial cervical neoplasia (CIN I, II, III), and cervical cancer. Colomb Med 42:144–153Google Scholar
  23. 23.
    Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19CrossRefPubMedGoogle Scholar
  24. 24.
    Dong DD, Yang H, Li K et al (2010) Human leukocyte antigen-G (HLA-G) expression in cervical lesions: association with cancer progression, HPV 16/18 infection, and host immune response. J Hum Reprod Sci 17:718–723CrossRefGoogle Scholar
  25. 25.
    Pett M, Coleman N (2007) Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 212:356–367CrossRefPubMedGoogle Scholar
  26. 26.
    Annunziata C, Buonaguro L, Buonaguro FM, Tornesello ML (2012) Characterization of the human papillomavirus (HPV) integration sites into genital cancers. Pathol Oncol Res 18:803–808CrossRefPubMedGoogle Scholar
  27. 27.
    Akagi K, Li J, Broutian TR et al (2014) Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res 24:185–199CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560CrossRefPubMedGoogle Scholar
  29. 29.
    Hopman AH, Smedts F, Dignef W et al (2004) Transition of high-grade cervical intraepithelial neoplasia to micro-invasive carcinoma is characterized by integration of HPV 16/18 and numerical chromosome abnormalities. J Pathol 202:23–33CrossRefPubMedGoogle Scholar
  30. 30.
    Mantovani F, Banks L (2001) The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20:7874–7887CrossRefPubMedGoogle Scholar
  31. 31.
    Evans MF, Cooper K (2004) Human papillomavirus integration: detection by in situ hybridization and potential clinical application. J Pathol 202:1–4CrossRefPubMedGoogle Scholar
  32. 32.
    Woodman CB, Collins SI, Young LS (2007) The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7:11–22CrossRefPubMedGoogle Scholar
  33. 33.
    Gao G, Johnson SH, Kasperbauer JL et al (2014) Mate pair sequencing of oropharyngeal squamous cell carcinomas reveals that HPV integration occurs much less frequently than in cervical cancer. J Clin Virol 59:195–200CrossRefPubMedGoogle Scholar
  34. 34.
    Scarpini CG, Groves IJ, Pett IJ, Ward D, Coleman N (2014) Virus transcript levels and cell growth rates after naturally occurring HPV16 integration events in basal cervical keratinocytes. J Pathol 233:281–293CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Evans MF, Mount SL, Beatty BG, Cooper K (2002) Biotinyl-tyramide-based in situ hybridization signal patterns distinguish human papillomavirus type and grade of cervical intraepithelial neoplasia. Mod Pathol 15:1339–1347CrossRefPubMedGoogle Scholar
  36. 36.
    Cañadas MP, Videlac S, Darwicha L et al (2010) Human papillomavirus HPV-16, 18, 52 and 58 integration in cervical cells of HIV-1-infected women. J Clin Virol 48:198–201CrossRefPubMedGoogle Scholar
  37. 37.
    Das P, Thomas A, Mahantshetty U, Shrivastava S, Deodhar K, Mulherkar R (2012) HPV genotyping and site of viral integration in cervical cancers in indian women. PLoS ONE 7:e41012CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bouvard V, Baan R, Straif K et al (2009) A review of human carcinogens—part B: biological agents. Lancet Oncol 10:321–322CrossRefPubMedGoogle Scholar
  39. 39.
    Parkin DM, Bray F (2006) The burden of HPV-related cancers, Chapter 2. Vaccine 24:S11–S25CrossRefGoogle Scholar
  40. 40.
    Ho CM, Lee BH, Chang SF et al (2011) Integration of human papillomavirus correlates with high levels of viral oncogene transcripts in cervical carcinogenesis. Virus Res 161:124–130CrossRefPubMedGoogle Scholar
  41. 41.
    Chen S, Yang Z, Zhang Y et al (2012) Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia. Pathol 7:40CrossRefGoogle Scholar
  42. 42.
    Song M, Ruth A, Policht FA et al (2010) Dysplastic cells in cytological cervical samples show a high incidence of chromosomal abnormalities. Diagn Cytopathol 38:28–33PubMedGoogle Scholar
  43. 43.
    Ferber MJ, Thorland EC, Brink AA et al (2003) Preferential integration of human papillomavirus type 18 near the c-MYC locus in cervical carcinoma. Oncogene 22:7233–7242CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fabrícia Gimenes
    • 1
  • Raquel Pantarotto Souza
    • 1
  • André Luelsdorf Pimenta de Abreu
    • 1
  • Monalisa Wolski Pereira
    • 1
  • Marcia Edilaine Lopes Consolaro
    • 1
  • Vânia Ramos Sela da Silva
    • 1
  1. 1.Laboratory of Clinical Cytology and Semen Analysis, Department of Clinical Analysis and BiomedicineState University of MaringáMaringáBrazil

Personalised recommendations