Archives of Gynecology and Obstetrics

, Volume 292, Issue 1, pp 21–35 | Cite as

Scientific evaluation of medicinal plants used for the treatment of abnormal uterine bleeding by Avicenna

  • Masumeh Mobli
  • Marzieh Qaraaty
  • Gholamreza Amin
  • Ismaeil Haririan
  • Mannan Hajimahmoodi
  • Roja Rahimi
Review

Abstract

Purpose

Abnormal uterine bleeding (AUB) is one of the prevalent gynecological disorders that cause considerable morbidity and management of that plays an important role in protecting women’s health. This review focuses on medicinal plants mentioned by Avicenna, a great Iranian philosopher and physician (A.D. 980–1037), in his book Canon for treatment of AUB.

Methods

Medicinal plants mentioned in Canon for treatment of AUB were elicited and searched in electronic databases including PubMed, Scopus, Google Scholar and Cochrane library to find studies that confirmed their efficacy. Data were collected for the years 1980–2014.

Results

The findings included 23 plants belonging to 18 families. Scientific findings have revealed that these plants control AUB through four mechanisms of action including inhibition of inflammatory process, inhibition of prostaglandins production, antiproliferative activity on human cervical cancer cells (HeLa), and estrogenic activity. All of the plants exhibited anti-inflammatory activity in vitro and/or in vivo. Cuscuta chinensis and Portulaca oleracea exhibited estrogenic activity. Boswellia carteri, Lens culinaris, Myrtus communis, Polygonum aviculare, Pistacia lentiscus, and Punica granatum have revealed inhibitory activity on biosynthesis of prostaglandins. Some of the mentioned plants including: Ceratonia siliqua, Cuscuta chinensis, Cuscuta epithymum, Cydonia oblonga, Paeonia sp., Portulaca oleracea, Solanum nigrum, Rumex acetosa and Onopordum acanthium have shown antiproliferative activity on HeLa cells.

Conclusion

Investigation of traditional Iranian medicine literatures can lead to the identification of effective natural medicines for the management of AUB; however, conclusive confirmation of the efficacy and safety of these treatments needs more evaluations.

Keywords

Abnormal uterine bleeding Avicenna Medicinal plants Prostaglandin Estrogenic Antiproliferative Anti-inflammatory 

Notes

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    Fraser IS, Critchley HOD, Munro MG (2007) Abnormal uterine bleeding: getting our terminology straight. Curr Opin Obstet Gynecol 19:591–595PubMedGoogle Scholar
  2. 2.
    The ESHRE Capri Workshop Group (2007) Endometrial bleeding. Hum Reprod Update 13:421–431Google Scholar
  3. 3.
    Critchley HO, Maybin JA (2011) Molecular and cellular causes of abnormal uterine bleeding of endometrial origin. Semin Reprod Med 29:400–409PubMedGoogle Scholar
  4. 4.
    Gibbs RSKB, Haney AF, Nygaard IE (2008) Danforth’s obstetrics and gynecology. Williams & Wilkins, PhiladelphiaGoogle Scholar
  5. 5.
    Marret H, Fauconnier A, Chabbert-Buffet N, Cravello L, Golfier F, Gondry J et al (2010) Clinical practice guidelines on menorrhagia: management of abnormal uterine bleeding before menopause. Eur J Obstet Gynecol Reprod Biol 152:133–137PubMedGoogle Scholar
  6. 6.
    Munro MG, Critchley HOD, Fraser IS (2011) The FIGO classification of causes of abnormal uterine bleeding in the reproductive years. Fertil Steril 95:2204–2208PubMedGoogle Scholar
  7. 7.
    American College of Obstetricians and Gynecologists (2013) Management of acute abnormal uterine bleeding in nonpregnant reproductive aged women. Obstet Gynecol 12:891–896Google Scholar
  8. 8.
    Ferenczy A (2003) Pathophysiology of endometrial bleeding. Maturitas 45:1–14PubMedGoogle Scholar
  9. 9.
    Munro MG, Critchley HOD, Broder MS, Fraser IS (2011) FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age. Int J Gynaecol Obstet 113:3–13PubMedGoogle Scholar
  10. 10.
    Smith RD (1980) Avicenna and the Canon of Medicine: a millennial tribute. West J Med 133:367–370PubMedCentralPubMedGoogle Scholar
  11. 11.
    Tabarraei M, Qaraaty M, Eftekhar T, Zafarghandi N, Nazem E et al (2013) Etiologies of hyper menorrhea (the view points of traditional Iranian medicine). J Islam Iran Trad Med 4:25–34Google Scholar
  12. 12.
    Ibn-e-sina AH (2005) Al-Qanun fit-tib. Alaalami Beirut library Press (research of ebrahim shamsedine), BeirutGoogle Scholar
  13. 13.
    Su S, Hua Y, Wang Y, Gu W, Zhou W, J-A Duan et al (2012) Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha, and Boswellia carterii. J Ethnopharmacol 139:649–656PubMedGoogle Scholar
  14. 14.
    Banno N, Akihisa T, Yasukawa K, Tokuda H, Tabata K, Nakamura Y et al (2006) Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. J Ethnopharmacol 107:249–253PubMedGoogle Scholar
  15. 15.
    Verhoff M, Seitz S, Northoff H, Jauch J, Schaible AM, Werz O (2012) A novel C(28)-hydroxylated lupeolic acid suppresses the biosynthesis of eicosanoids through inhibition of cytosolic phospholipase A2. Biochem Pharmacol 84:681–691PubMedGoogle Scholar
  16. 16.
    Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon MS, Nakayama T (2002) Antioxidant activity of polyphenols in carob pods. J Agric Food Chem 50:373–377PubMedGoogle Scholar
  17. 17.
    Makris DP, Kefalas P (2004) Carob Pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol 42:105–108Google Scholar
  18. 18.
    Khatib S, Vaya J (2010) Fig, carob, pistachio, and health. In: bioactive foods in promoting health fruits and vegetables. Academic Press, San FranciscoGoogle Scholar
  19. 19.
    Baraldi M (2004) Aqueous extract of Ceratonia siliqua leaves and pods containing polyphenols with antioxidant and antitumor activities. Eur. Patent EP1438058B1Google Scholar
  20. 20.
    Karim AA, Azlan A (2012) Fruit pod extracts as a source of nutraceuticals and pharmaceuticals. Molecules 17:11931–11946PubMedGoogle Scholar
  21. 21.
    Custódio L, Escapa AL, Patarra J, Aligué R, Alberício F, Neng NR et al (2013) Sapwood of carob tree (Ceratonia siliqua L.) as a potential source of bioactive compounds. Rec Nat Prod 7:225–229Google Scholar
  22. 22.
    CustódioL EscapaAL, FernandesE FajardoA, AliguéR AlberícioF, Neng N et al (2011) In vitro cytotoxic effects and apoptosis induction by a methanol leaf extract of carob tree (Ceratonia siliqua L.). J Med Plants Res 5:1987–1996Google Scholar
  23. 23.
    Ghazanfari T, Naseri M, Shams J, Rahmati B (2013) Cytotoxic effects of Cuscuta extract on human cancer cell lines. Food Agric Immunol 24:87–94Google Scholar
  24. 24.
    Zeraati F, Zamani A, Goodarzi MT, Hashjin SMM, Razzaghi K (2010) In vitro cytotoxic effects of Cuscuta chinensis whole extract on human acute lymphoblastic leukemia cell line. IranJ Med Sci 35:310–314Google Scholar
  25. 25.
    Sepehr MF, Jameie SB, Hajijafari B (2011) The Cuscuta kotschyana effects on breast cancer cells line MCF7. J Med Plants Res 5:6344–6351Google Scholar
  26. 26.
    Jafarian A, Ghannadi A, Mohebi B (2014) Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells. R P S 9:115–122Google Scholar
  27. 27.
    Liao JC, Chang WT, Lee MS, Chiu YJ, Chao WK, Lin YC et al (2014) Antinociceptive and anti-inflammatory activities of Cuscuta chinensis seeds in mice. Am J Chin Med 42:223–242PubMedGoogle Scholar
  28. 28.
    Ke J, Duan R (2013) Effects of flavonoids from semen cuscutae on the hippocampal-hypothalamic-pituitary-ovarian sex hormone receptors in female rats exposed to psychological stress. Clin Exp Obstet Gynecol 40:271–274PubMedGoogle Scholar
  29. 29.
    Ding JX, Li WL, Bai J, Ji YB (2013) Spectrum-effect correlation of mimic estrogenic activity of seeds of Cuscuta chinensis. Chin Pharm J48:337–340Google Scholar
  30. 30.
    Tsai YC, Lai WC, Du YC, Wu SF, El-Shazly M, Lee CL, et al. (2012) Lignan and flavonoid phytoestrogens from the seeds of Cuscuta chinensis. J Nat Prod 75:1424–1424Google Scholar
  31. 31.
    Essafi-Benkhadir K, Refai A, Riahi I, Fattouch S, Karoui H, Essafi M (2012) Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition. Biochem Biophys Res Commun 418:180–185PubMedGoogle Scholar
  32. 32.
    Pacifico S, Gallicchio M, Fiorentino A, Fischer A, Meyer U, Stintzing FC (2012) Antioxidant properties and cytotoxic effects on human cancer cell lines of aqueous fermented and lipophilic quince (Cydonia oblonga Mill.) preparations. Food Chem Toxicol 50:4130–4135PubMedGoogle Scholar
  33. 33.
    Chandrashekar KS, Prasanna KS (2010) Analgesic and anti-inflammatory activities of the essential oil from Cymbopogon flexuosus. Pharmacogn J 2:23–25Google Scholar
  34. 34.
    Figueirinha A, Cruz MT, Francisco V, Lopes MC, Batista MT (2010) Anti-inflammatory activity of cymbopogon citratus leaf infusion in lipopolysaccharide-stimulated dendritic cells: contribution of the polyphenols. J Med Food 13:681–690PubMedGoogle Scholar
  35. 35.
    Francisco V, Costa G, Figueirinha A, Marques C, Pereira P, Miguel Neves B et al (2013) Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: contribution of chlorogenic acid. J Ethnopharmacol 148:126–134PubMedGoogle Scholar
  36. 36.
    Francisco V, Figueirinha A, Neves BM, García-Rodríguez C, Lopes MC, Cruz MT et al (2011) Cymbopogon citratus as source of new and safe anti-inflammatory drugs: bio-guided assay using lipopolysaccharide-stimulated macrophages. J Ethnopharmacol 133:818–827PubMedGoogle Scholar
  37. 37.
    Leite BLS, Bonfim RR, Antoniolli AR, Thomazzi SM, Araújo AAS, Blank AF et al (2010) Assessment of antinociceptive, anti-inflammatory and antioxidant properties of Cymbopogon winterianus leaf essential oil. Pharm Biol 48:1164–1169PubMedGoogle Scholar
  38. 38.
    Tsai ML, Lin CC, Lin WC, Yang CH (2011) Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs. Biosci Biotechnol Biochem 75:1977–1983PubMedGoogle Scholar
  39. 39.
    Brito RG, Guimarães AG, Quintans JSS, Santos MRV, De Sousa DP, Badaue-Passos D Jr et al (2012) Citronellol, a monoterpene alcohol, reduces nociceptive and inflammatory activities in rodents. J Nat Med 66:637–644PubMedGoogle Scholar
  40. 40.
    Quintans LJ Jr, Guimarães AG, de Santana MT, Araújo BES, Moreira FV, Bonjardim LR et al (2011) Citral reduces nociceptive and inflammatory response in rodents. Braz J Pharmacog 21:497–502Google Scholar
  41. 41.
    Begum S, Saxena B, Goyal M, Ranjan R, Joshi VB, Rao CV et al (2010) Study of anti-inflammatory, analgesic and antipyretic activities of seeds of Hyoscyamus niger and isolation of a new coumarinolignan. Fitoterapia 81:178–184PubMedGoogle Scholar
  42. 42.
    Moradi M, Ghosian MH, Yaghout poor E (2012) Assessment of Hyoscyamus niger seeds alcoholic extract effects on acute and chronic pain in male NMRI rats. J Basic Clin Pathophysiol 1:29–36Google Scholar
  43. 43.
    Oto G, Ozdemir H, Yaren B, Yetkin Y, Tas A, Tanrıtanır P, Öztürk F (2013) Antinociceptive activity of methanol extract of Hyoscyamus reticulatus L. in mice. AJPCT 1:117–123Google Scholar
  44. 44.
    KumarV Ankit, KshitijA Prem S (2013) In vitro anti-inflammatory activity of Juglans regia bark. JDDT 3:122–123Google Scholar
  45. 45.
    Erdemoglu N, Küpeli E, Yeşilada E (2003) Anti-inflammatory and antinociceptive activity assessment of plants used as remedy in Turkish folk medicine. J Ethnopharmacol 89:123–129PubMedGoogle Scholar
  46. 46.
    Ezzat Faris MAI, Takruri HR, Yousef Issa A (2012) Role of lentils (Lens culinaris L.) in human health and nutrition: a review. Mediterr J Nutr Metab 6:3–16Google Scholar
  47. 47.
    Thavarajah D, Thavarajah P, Wejesuriya A, Rutzke M et al (2011) The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3 year study. Euphytica 180:123–128Google Scholar
  48. 48.
    Zia-Ul-Haq M, Landa P, Kutil Z, Qayum M, Ahmad S (2013) Evaluation of anti-inflammatory activity of selected legumes from Pakistan: in vitro inhibition of cyclooxygenase-2. Pak J Pharm Sci 26:185–187PubMedGoogle Scholar
  49. 49.
    Rossi A, Di Paola R, Mazzon E, Genovese T, Caminiti R, Bramanti P et al (2009) Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo. J Pharmacol Exp Ther 329:76–86PubMedGoogle Scholar
  50. 50.
    Feisst C, Franke L, Appendino G, Werz O (2005) Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds. J Pharmacol Exp Ther 315:389–396PubMedGoogle Scholar
  51. 51.
    Koeberle A, Pollastro F, Northoff H, Werz O (2009) Myrtucommulone, a natural acylphloroglucinol, inhibits microsomal prostaglandin E-2 synthase-1. Br J Pharmacol 156:952–961PubMedCentralPubMedGoogle Scholar
  52. 52.
    Hosseinzadeh H, Khoshdel M, Ghorbani M (2011) Antinociceptive, anti-inflammatory effects and acute toxicity of aqueous and ethanolic extracts of Myrtus communis L. Aerial parts in mice. J Acupunct Meridian Stud 4:242–247PubMedGoogle Scholar
  53. 53.
    Qaraaty M, Kamali SH, Dabaghian FH, Zafarghandi N, Mokaberinejad R, Mobli M, Amin G, Naseri M, Kamalinejad M, Amin M, Ghaseminejad A, HosseiniKhabiri SJ, Talei D (2014) Effect of myrtle fruit syrup on abnormal uterine bleeding: a randomized double-blind, placebo- controlled pilot study. Daru 22:1–7Google Scholar
  54. 54.
    Bose A, Dey Ray S, Sahoo M (2012) Evaluation of analgesic and antioxidant potential of ethanolic extract of Nymphaea alba rhizome. Oxid Antioxid Med Sci 1:217–223Google Scholar
  55. 55.
    Jesurun RSJ, Jagadeesh S, Ganesan S, Rao KV, Eerike M (2013) Anti inflammatory activity of ethanolic extract of Nymphaea alba flower in swiss albino mice. Int J Med Res Health Sci 2:474–478Google Scholar
  56. 56.
    Süntar IP, Akkol EK, Baykal T (2010) Assessment of anti-inflammatory and antinociceptive activities of Olea europaea L. J Med Food 13:352–356PubMedGoogle Scholar
  57. 57.
    Chebbi Mahjoub R, Khemiss M, Dhidah M, Dellaï A, Bouraoui A, Khemiss F (2011) Chloroformic and methanolic extracts of Olea europaea L. Leaves present anti-inflammatory and analgesic activities. ISRN Pharmacol 2011:1–5Google Scholar
  58. 58.
    Eidi A, Moghadam-kia S, Moghadam JZ, Eidi M, Rezazadeh S (2012) Antinociceptive and anti-inflammatory effects of olive oil (Olea europeae L.) in mice. Pharm Biol 50:332–337PubMedGoogle Scholar
  59. 59.
    Haloui E, Marzouk B, Marzouk Z, Bouraoui A, Fenina N (2011) Hydroxytyrosol and oleuropein from olive leaves: potent anti-inflammatory and analgesic activities. J Food Agric Environ 9:128–133Google Scholar
  60. 60.
    Csupor-Löffler B, Hajdú Z, Réthy B, Zupkó I, Máthé I, Rédei T et al (2009) Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part II. Phytother Res 23:1109–1115PubMedGoogle Scholar
  61. 61.
    Strzelecka M, Bzowska M, Kozieł J, Szuba B, Dubiel O, Rivera Nunez D et al (2005) Anti-inflammatory effects of extracts from some traditional mediterranean diet plants. J Physiol Pharmacol 56:139–156PubMedGoogle Scholar
  62. 62.
    Talhouk RS, Esseili MA, Kogan J, Atallah MR, Talhouk SN, Homaidan FR (2009) Inhibition of endotoxin-induced pro-inflammatory markers by water extracts of Onopordum cynarocephalum and Achillea damascena. J Med Plants Res 3:686–696Google Scholar
  63. 63.
    Nikolova P, Ivanovska N (1999) Estimation of immunological properties of flower and root extracts from Paeonia peregrina. J Herbs Spices Med Plants 6:1–9Google Scholar
  64. 64.
    Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J et al (2012) Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement Altern Med 12:1–14Google Scholar
  65. 65.
    Chen N, Liu D, Soromou LW, Sun J, Zhong W, Guo W et al (2014) Paeonol suppresses lipopolysaccharide-induced inflammatory cytokines in macrophage cells and protects mice from lethal endotoxin shock. Fundam Clin Pharmacol 28:268–276PubMedGoogle Scholar
  66. 66.
    Zhang L, Zhang S (2011) Modulating Bcl-2 family proteins and caspase-3 in induction of apoptosis by paeoniflorin in human cervical cancer cells. Phytother Res 25:1551–1557PubMedGoogle Scholar
  67. 67.
    Zhang LL, Zhang SL, Wang SZ (2010) Relevant study on apoptosis of cervical cancer HeLa cells induced by paeoniflorin. Natl Med J Chin 90:3371–3375Google Scholar
  68. 68.
    Dellai A, Souissi H, Borgi W, Bouraoui A, Chouchane N (2013) Antiinflammatory and antiulcerogenic activities of Pistacia lentiscus L. leaves extracts. Ind Crop Prod 49:879–882Google Scholar
  69. 69.
    Zhou L, Satoh K, Takahashi K, Watanabe S, Nakamura W, Maki J, Hatano H, Takekawa F, Shimada C, Sakagami H (2009) Re-evaluation of anti-inflammatory activity of mastic using activated macrophages. In Vivo 23:583–589PubMedGoogle Scholar
  70. 70.
    Bozorgi M, Memariani Z, Mobli M, Salehi Surmaghi MH, Shams-Ardekani MR, Rahimi R (2013) Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. Sci World J 2013:1–33Google Scholar
  71. 71.
    Tunón H, Olavsdotter C, Bohlin L (1995) Evaluation of anti-inflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. J Ethnopharmacol 48:61–76PubMedGoogle Scholar
  72. 72.
    Granica S, Czerwińska ME, Żyżyńska-Granica B, Kiss AK (2013) Antioxidant and anti-inflammatory flavonol glucuronides from Polygonum aviculare L. Fitoterapia 9:180–188Google Scholar
  73. 73.
    Shobeiri SF, Sharei S, Heidari A, Kianbakht S (2009) Portulaca oleracea L. in the treatment of patients with abnormal uterine bleeding: a pilot clinical trial. Phytother Res 23:1411–1414PubMedGoogle Scholar
  74. 74.
    Londonkar RL, Nayaka HB (2013) Effect of ethanol extract of Portulaca oleracea L on ovulation and estrous cycle in female albino rats. J Pharm Res 6:431–436Google Scholar
  75. 75.
    Chan K, Islam MW, Kamil M, Radhakrishnan R, Zakaria MNM, Habibullah M et al (2000) The analgesic and anti-inflammatory effects of Portulaca oleracea L. subsp. sativa (Haw.) Celak. J Ethnopharmacol 73:445–451PubMedGoogle Scholar
  76. 76.
    Zhao R, Gao X, Cai Y, Shao X, Jia G, Huang Y et al (2013) Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr Polym 96:376–383PubMedGoogle Scholar
  77. 77.
    Rashed AN, Afifi FU, Disi AM (2003) Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1. J Ethnopharmacol 88:131–136PubMedGoogle Scholar
  78. 78.
    Bekir J, Mars M, Souchard JP, Bouajila J (2013) Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves. Food Chem Toxicol 55:470–475PubMedGoogle Scholar
  79. 79.
    Bekir J, Mars M, Vicendo P, Fterrich A, Bouajila J (2013) Chemical composition and antioxidant, anti-inflammatory, and antiproliferation activities of pomegranate (Punica granatum) flowers. J Med Food 16:544–550PubMedGoogle Scholar
  80. 80.
    Ismail T, Sestili P, Akhtar S (2012) Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol 143:397–405PubMedGoogle Scholar
  81. 81.
    Ouachrif A, Khalki H, Chaib S, Mountassir M, Aboufatima R, Farouk L et al (2012) Comparative study of the anti-inflammatory and antinociceptive effects of two varieties of Punica granatum. Pharm Biol 50:429–438PubMedGoogle Scholar
  82. 82.
    Sarker M, Das SC, Saha SK, Al Mahmud Z, Bachar SC (2012) Analgesic and anti-inflammatory activities of flower extracts of Punica granatum Linn. (Punicaceae). J Appl Pharmaceut Sci 2:133–136Google Scholar
  83. 83.
    Bagri P, Ali M, Aeri V, Sultana S, Bhowmik M (2010) Evalution of anti-inflammatory and analgesic activity of Punica granatum linn. Int J Drug Dev Res 2:698–702Google Scholar
  84. 84.
    Lee C-J, Chen L-G, Liang W-L, Wang C-C (2010) Anti-inflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem 118:315–322Google Scholar
  85. 85.
    Madduluri S, Sitaram B, Balasekharan C (2014) In vitro evaluation of anti inflammatory activity of methanolic and ethanolic leaf extracts of five indigenous plants in South India. Int J PharmTech Research 6:569–574Google Scholar
  86. 86.
    Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM (2008) Bioavailable constituents/metabolites of pomegranate (Punica granatum L) preferentially inhibit COX2 activity ex vivo and IL-1beta-induced PGE2 production in human chondrocytes in vitro. J Inflamm 5:1–10Google Scholar
  87. 87.
    Balwani S, Nandi D, Jaisankar P, Ghosh B (2011) 2-Methyl-pyran-4-one-3-O-β-D-glucopyranoside isolated from leaves of Punica granatum inhibits the TNFα-induced cell adhesion molecules expression by blocking nuclear transcription factor-κB (NF-κB). Biochimie 93:921–930PubMedGoogle Scholar
  88. 88.
    Ahangarpour A, Heidari R, Abdolahzadeh M, Oroojan AA (2012) Antispasmodic effects of aqueous and hydroalcoholic punica granatum flower extracts on the uterus of non-pregnant rats. J Reprod Infertil 13:140–142Google Scholar
  89. 89.
    Mossa JS, Rafatullah S, Galal AM, Al-Yahya MA (1995) Pharmacological studies of Rhus retinorrhaea. Int J Pharmacogn 33:242–246Google Scholar
  90. 90.
    Lajter I, Zupkó I, Molnár J, Jakab G, Balogh L, Vasas A et al (2013) Antiproliferative activity of polygonaceae species from the Carpathian Basin against human cancer cell lines. Phytother Res 27:77–85PubMedGoogle Scholar
  91. 91.
    Ravi V, Saleem TSM, Patel SS, Raamamurthy J, Gauthaman K (2009) Anti-Inflammatory effect of methanolic extract of Solanum nigrum linn berries. Int Appl Res Nat Prod 2:33–36Google Scholar
  92. 92.
    Zakaria ZA, Gopalan HK, Zainal H, Mohd Pojan NH, Morsid NA, Aris A, Sulaiman MR (2006) Antinociceptive, anti-inflammatory and antipyretic effects of Solanum nigrum chloroform extract in animal models. Yakugaku Zasshi 126:1171–1178PubMedGoogle Scholar
  93. 93.
    Li J, Li Q, Feng T, Li K (2008) Aqueous extract of Solanum nigrum inhibit growth of cervical carcinoma (U14) via modulating immune response of tumor bearing mice and inducing apoptosis of tumor cells. Fitoterapia 79:548–556PubMedGoogle Scholar
  94. 94.
    Li J, Li Q, Peng Y, Zhao R, Han Z, Gao D (2010) Protective effects of fraction 1a of polysaccharides isolated from Solanum nigrum Linne on thymus in tumor-bearing mice. J Ethnopharmacol 129:350–356PubMedGoogle Scholar
  95. 95.
    Li J, Li QW, Gao DW, Han ZS, Lu WZ (2009) Antitumor and immunomodulating effects of polysaccharides isolated from Solanum nigrum Linne. Phytother Res 23:1524–1530PubMedGoogle Scholar
  96. 96.
    Hiermann A, Writzel M (1998) Antiphlogistic glycopeptide from the roots of Symphytum officinale. Pharm Pharmacol Lett 8:154–157Google Scholar
  97. 97.
    Shipochliev T, Dimitrov A, Aleksandrova E (1981) Anti-inflammatory action of a group of plant extracts. Vet Med Nauki 18:87–94PubMedGoogle Scholar
  98. 98.
    Hariri EH, Asmar ME, Demirdjian SA, Daher CF, Mroueh MA (2013) Anti-inflammatory effect of the methanol, ethyl acetate and chloroform extracts of Tragopogon porrifolius aerial parts. Planta Med 79:PN67Google Scholar
  99. 99.
    Eldeen IMS, Van Staden J (2008) Cyclooxygenase inhibition and antimycobacterial effects of extracts from Sudanese medicinal plants. S Afr J Bot 74:225–229Google Scholar
  100. 100.
    Effraim KD, Osunkwo UA, Onyeyilli P, Ngulde A (1998) Preliminary investigation of the possible antinociceptive activity of aqueous leaf extract of Ziziphus spina christi (LINN) desf. Indian J Pharmacol 30:271–272Google Scholar
  101. 101.
    Adzu B, Amos S, Wambebe C, Gamaniel K (2001) Antinociceptive activity of Zizyphus spina-christi root bark extract. Fitoterapia 72:344–350PubMedGoogle Scholar
  102. 102.
    Feisst C, Franke L, Appendino G, Werz O (2005) Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds. J Pharmacol Exp Ther 315:389–396PubMedGoogle Scholar
  103. 103.
    Koeberle A, Pollastro F, Northoff H, Werz O (2009) Myrtucommulone, a natural acylphloroglucinol, inhibits microsomal prostaglandin E(2) synthase-1. Br J Pharmacol 156:952–961PubMedCentralPubMedGoogle Scholar
  104. 104.
    Rossi A, Di Paola R, Mazzon E, Genovese T, Caminiti R, Bramanti P et al (2009) Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo. J Pharmacol Exp Ther 329:76–86PubMedGoogle Scholar
  105. 105.
    Hosseinzadeh H, Khoshdel M, Ghorbani M (2011) Antinociceptive, anti-inflammatory effects and acute toxicity of aqueous and ethanolic extracts of Myrtus communis L. Aerial parts in mice. J Acupunct Meridian Stud 4:242–247PubMedGoogle Scholar
  106. 106.
    Suntar IP, Akkol EK, Baykal T (2010) Assessment of anti-inflammatory and antinociceptive activities of Olea europaea L. J Med Food 13:352–356PubMedGoogle Scholar
  107. 107.
    Bahramsoltani R, Farzaei MH, Rahimi R (2014) Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch Dermatol Res 306:601–617PubMedGoogle Scholar
  108. 108.
    Farzaei MH, Shams-Ardekani MR, Abbasabadi Z, Rahimi R (2013) Scientific evaluation of edible fruits and spices used for the treatment of peptic ulcer in traditional Iranian medicine. ISRN Gastroenterol 2013:136932PubMedCentralPubMedGoogle Scholar
  109. 109.
    Rahimi R, Baghaei A, Baeeri M, Amin G, Shams-Ardekani MR, Khanavi M et al (2013) Promising effect of Magliasa, a traditional Iranian formula, on experimental colitis on the basis of biochemical and cellular findings. World J Gastroenterol 19:1901–1911PubMedCentralPubMedGoogle Scholar
  110. 110.
    Rahimi R, Shams-Ardekani MR, Abdollahi M (2010) A review of the efficacy of traditional Iranian medicine for inflammatory bowel disease. World J Gastroenterol 16:4504–4514PubMedCentralPubMedGoogle Scholar
  111. 111.
    Vaya J, Mahmood S (2006) Flavonoid content in leaf extracts of the fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.). BioFactors 28:169–175PubMedGoogle Scholar
  112. 112.
    Figueirinha A, Paranhos A, Pérez-Alonso JJ, Santos-Buelga C, Batista MT (2008) Cymbopogon citratus leaves: characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem 110:718–728Google Scholar
  113. 113.
    Zhao MH, Jiang ZT, Liu T, Li R (2014) Flavonoids in Juglans regia L. Leaves and evaluation of in vitro antioxidant activity via intracellular and chemical methods. Sci World J 2014:1–6Google Scholar
  114. 114.
    Zou Y, Chang SK, Gu Y, Qian SY (2011) Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J Agric Food Chem 59:2268–2276PubMedCentralPubMedGoogle Scholar
  115. 115.
    Tuberoso CIG, Rosa A, Bifulco E, Melis MP, Atzeri A, Pirisi FM et al (2010) Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chem 123:1242–1251Google Scholar
  116. 116.
    Jambor J, Skrzypczak L (1991) flavonoids from the flowers of Nymphaea alba L. Acta Societatis Botanicorum Poloniae 60:119–125Google Scholar
  117. 117.
    de Laurentis N, Stefanizzi L, Milillo MA, Tantillo G (1998) Flavonoids from leaves of Olea europaea L. cultivars. Ann Pharm Fr 56:268–273PubMedGoogle Scholar
  118. 118.
    Vlahov G (1992) Flavonoids in three olive (Olea europaea) fruit varieties during maturation. J Sci Food Agr 58:157–159Google Scholar
  119. 119.
    Li C, Du H, Wang L, Shu Q, Zheng Y, Xu Y et al (2009) Flavonoid composition and antioxidant activity of tree peony (Paeonia section moutan) yellow flowers. J Agric Food Chem 57:8496–8503PubMedGoogle Scholar
  120. 120.
    Zhu H, Wang Y, Liu Y, Xia Y, Tang T (2010) Analysis of flavonoids in Portulaca oleracea L. by UV–vis spectrophotometry with comparative study on different extraction technologies. Food Anal Methods 3:90–97Google Scholar
  121. 121.
    Sudheesh S, Vijayalakshmi NR (2005) Flavonoids from Punica granatum–potential antiperoxidative agents. Fitoterapia 76:181–186PubMedGoogle Scholar
  122. 122.
    Mukherjee G, Gajaraj AJ, Mathias J, Marya D (2005) Treatment of abnormal uterine bleeding with micronized flavonoids. Int J Gynaecol Obstet 89:156–157PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Masumeh Mobli
    • 1
  • Marzieh Qaraaty
    • 2
  • Gholamreza Amin
    • 1
    • 3
  • Ismaeil Haririan
    • 4
  • Mannan Hajimahmoodi
    • 1
    • 5
  • Roja Rahimi
    • 1
  1. 1.Department of Traditional Pharmacy, School of Traditional MedicineTehran University of Medical SciencesTehranIran
  2. 2.Traditional Medicine Clinical Trial Research CenterShahed UniversityTehranIran
  3. 3.Department of Pharmacognosy, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  4. 4.Department of Pharmaceutics, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  5. 5.Department of Drug and Food Control, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations