Archives of Gynecology and Obstetrics

, Volume 291, Issue 4, pp 889–895 | Cite as

Evaluation of an automated breast 3D-ultrasound system by comparing it with hand-held ultrasound (HHUS) and mammography

  • Michael Golatta
  • Christina Baggs
  • Mirjam Schweitzer-Martin
  • Christoph Domschke
  • Sarah Schott
  • Aba Harcos
  • Alexander Scharf
  • Hans Junkermann
  • Geraldine Rauch
  • Joachim Rom
  • Christof Sohn
  • Joerg Heil
Gynecologic Oncology



Automated three-dimensional (3D) breast ultrasound (US) systems are meant to overcome the shortcomings of hand-held ultrasound (HHUS). The aim of this study is to analyze and compare clinical performance of an automated 3D-US system by comparing it with HHUS, mammography and the clinical gold standard (defined as the combination of HHUS, mammography and—if indicated—histology).


Nine hundred and eighty three patients (=1,966 breasts) were enrolled in this monocentric, explorative and prospective cohort study. All examinations were analyzed blinded to the patients´ history and to the results of the routine imaging. The agreement of automated 3D-US with HHUS, mammography and the gold standard was assessed with kappa statistics. Sensitivity, specificity and positive and negative predictive value were calculated to assess the test performance.


Blinded to the results of the gold standard the agreement between automated 3D-US and HHUS or mammography was fair, given by a Kappa coefficient of 0.31 (95 % CI [0.26;0.36], p < 0.0001) and 0.25 (95 % CI [0.2;0.3], p < 0.0001), respectively. Our results showed a high negative predictive value (NPV) of 98 %, a high specificity of 85 % and a sensitivity of 74 % based on the cases with US-guided biopsy. Including the cases where the lesion was seen in a second-look automated 3D-US the sensitivity improved to 84 % (NPV = 99 %, specificity = 85 %).


The results of this study let us suggest, that automated 3D-US might be a helpful new tool in breast imaging, especially in screening.


Ultrasound Breast Automated three-dimensional breast ultrasound 3D scanning BI-RADS® 


Ethical standards

The vote of an independent ethics committee has been received.

Conflict of interest

There is no actual or potential conflict of interest.


  1. 1.
    Wild JJ, Neal D (1951) Use of high-frequency ultrasonic waves for detecting changes of texture in living tissues. Lancet 1(6656):655–657CrossRefPubMedGoogle Scholar
  2. 2.
    Kreienberg R (2012) Interdisziplinäre S3-Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms. Leitlinienprogramm Onkologie der AWMF, Deutschen Krebsgesellschaft e.V. und Deutschen Krebshilfe e.V.
  3. 3.
    Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, Brenner RJ, Bassett L, Berg W, Feig S, Hendrick E, Mendelson E, D’Orsi C, Sickles E, Burhenne LW (2010) Breast cancer screening with imaging: recommendations from the society of breast imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol 7(1):18–27. doi: 10.1016/j.jacr.2009.09.022 CrossRefPubMedGoogle Scholar
  4. 4.
    Newell MS, Birdwell RL, D’Orsi CJ, Bassett LW, Mahoney MC, Bailey L, Berg WA, Harvey JA, Herman CR, Kaplan SS, Liberman L, Mendelson EB, Parikh JR, Rabinovitch R, Rosen EL, Sutherland ML (2010) ACR appropriateness criteria(R) on nonpalpable mammographic findings (excluding calcifications). J Am Coll Radiol 7(12):920–930. doi: 10.1016/j.jacr.2010.07.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Perry N, Broeders M, de Wolf C, Tornberg S, Holland R, von Karsa L (2008) European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition–summary document. Ann Oncol 19(4):614–622. doi: 10.1093/annonc/mdm481 CrossRefPubMedGoogle Scholar
  6. 6.
    Albert US, Altland H, Duda V, Engel J, Geraedts M, Heywang-Kobrunner S, Holzel D, Kalbheim E, Koller M, Konig K, Kreienberg R, Kuhn T, Lebeau A, Nass-Griegoleit I, Schlake W, Schmutzler R, Schreer I, Schulte H, Schulz-Wendtland R, Wagner U, Kopp I (2009) 2008 Update of the guideline: early detection of breast cancer in Germany. J Cancer Res Clin Oncol 135(3):339–354. doi: 10.1007/s00432-008-0450-y CrossRefPubMedGoogle Scholar
  7. 7.
    Bae MS, Moon WK, Chang JM, Koo HR, Kim WH, Cho N, Yi A, Yun BL, Lee SH, Kim MY, Ryu EB, Seo M (2014) Breast cancer detected with screening US: reasons for nondetection at mammography. Radiology 270(2):369–377. doi: 10.1148/radiol.13130724 CrossRefPubMedGoogle Scholar
  8. 8.
    Zonderland HM, Coerkamp EG, Hermans J, van de Vijver MJ, van Voorthuisen AE (1999) Diagnosis of breast cancer: contribution of US as an adjunct to mammography. Radiology 213(2):413–422CrossRefPubMedGoogle Scholar
  9. 9.
    Corsetti V, Ferrari A, Ghirardi M, Bergonzini R, Bellarosa S, Angelini O, Bani C, Ciatto S (2006) Role of ultrasonography in detecting mammographically occult breast carcinoma in women with dense breasts. Radiol Med 111(3):440–448. doi: 10.1007/s11547-006-0040-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Crystal P, Strano SD, Shcharynski S, Koretz MJ (2003) Using sonography to screen women with mammographically dense breasts. AJR Am J Roentgenol 181(1):177–182CrossRefPubMedGoogle Scholar
  11. 11.
    Leconte I, Feger C, Galant C, Berliere M, Berg BV, D’Hoore W, Maldague B (2003) Mammography and subsequent whole-breast sonography of nonpalpable breast cancers: the importance of radiologic breast density. AJR Am J Roentgenol 180(6):1675–1679CrossRefPubMedGoogle Scholar
  12. 12.
    Dick DE, Elliott RD, Metz RL, Rojohn DS (1979) A new automated, high resolution ultrasound breast scanner. Ultrason Imaging 1(4):368–377CrossRefPubMedGoogle Scholar
  13. 13.
    Egan RL, Egan KL (1984) Detection of breast carcinoma: comparison of automated water-path whole-breast sonography, mammography, and physical examination. AJR Am J Roentgenol 143(3):493–497CrossRefPubMedGoogle Scholar
  14. 14.
    Egan RL, Egan KL (1984) Automated water-path full-breast sonography: correlation with histology of 176 solid lesions. AJR Am J Roentgenol 143(3):499–507CrossRefPubMedGoogle Scholar
  15. 15.
    Hollenhorst M, Hansen C, Huttebrauker N, Schasse A, Heuser L, Ermert H, Schulte-Altedorneburg G (2010) Ultrasound computed tomography in breast imaging: first clinical results of a custom-made scanner. Ultraschall Med 31(6):604–609. doi: 10.1055/s-0029-1245506 CrossRefPubMedGoogle Scholar
  16. 16.
    Jackson VP, Kelly-Fry E, Rothschild PA, Holden RW, Clark SA (1986) Automated breast sonography using a 7.5-MHz PVDF transducer: preliminary clinical evaluation. Work in progress. Radiology 159(3):679–684CrossRefPubMedGoogle Scholar
  17. 17.
    Kimme-Smith C, Bassett LW, Gold RH (1988) High frequency breast ultrasound. Hand-held versus automated units; examination for palpable mass versus screening. J Ultrasound Med 7(2):77–81PubMedGoogle Scholar
  18. 18.
    Maturo VG, Zusmer NR, Gilson AJ, Smoak WM, Janowitz WR, Bear BE, Goddard J, Dick DE (1980) Ultrasound of the whole breast utilizing a dedicated automated breast scanner. Radiology 137(2):457–463CrossRefPubMedGoogle Scholar
  19. 19.
    Richter K, Heywang-Kobrunner SH, Winzer KJ, Schmitt KJ, Prihoda H, Frohberg HD, Guski H, Gregor P, Blohmer JU, Fobbe F, Doinghaus K, Lohr G, Hamm B (1997) Detection of malignant and benign breast lesions with an automated US system: results in 120 cases. Radiology 205(3):823–830CrossRefPubMedGoogle Scholar
  20. 20.
    Shipley JA, Duck FA, Goddard DA, Hillman MR, Halliwell M, Jones MG, Thomas BT (2005) Automated quantitative volumetric breast ultrasound data-acquisition system. Ultrasound Med Biol 31(7):905–917. doi: 10.1016/j.ultrasmedbio.2005.03.007 CrossRefPubMedGoogle Scholar
  21. 21.
    Sinha SP, Goodsitt MM, Roubidoux MA, Booi RC, LeCarpentier GL, Lashbrook CR, Thomenius KE, Chalek CL, Carson PL (2007) Automated ultrasound scanning on a dual-modality breast imaging system: coverage and motion issues and solutions. J Ultrasound Med 26(5):645–655PubMedGoogle Scholar
  22. 22.
    Vilaro MM, Kurtz AB, Needleman L, Fleischer AC, Mitchell DG, Rosenberg A, Miller C, Rifkin MD, Pennell R, Baltarowich O et al (1989) Hand-held and automated sonomammography. Clinical role relative to X-ray mammography. J Ultrasound Med 8(2):95–100PubMedGoogle Scholar
  23. 23.
    Giuliano V, Giuliano C (2012) Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts. Clin Imaging. doi: 10.1016/j.clinimag.2012.09.018 Google Scholar
  24. 24.
    Golatta M, Franz D, Harcos A, Junkermann H, Rauch G, Scharf A, Schuetz F, Sohn C, Heil J (2013) Interobserver reliability of automated breast volume scanner (ABVS) interpretation and agreement of ABVS findings with hand held breast ultrasound (HHUS), mammography and pathology results. Eur J Radiol 82(8):e332–e336. doi: 10.1016/j.ejrad.2013.03.005 CrossRefPubMedGoogle Scholar
  25. 25.
    Kelly KM, Richwald GA (2011) Automated whole-breast ultrasound: advancing the performance of breast cancer screening. Semin Ultrasound CT MR 32(4):273–280. doi: 10.1053/j.sult.2011.02.004 CrossRefPubMedGoogle Scholar
  26. 26.
    Lin X, Wang J, Han F, Fu J, Li A (2012) Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol 81(5):873–878. doi: 10.1016/j.ejrad.2011.02.038 CrossRefPubMedGoogle Scholar
  27. 27.
    Padilla F, Roubidoux MA, Paramagul C, Sinha SP, Goodsitt MM, Le Carpentier GL, Chan HP, Hadjiiski LM, Fowlkes JB, Joe AD, Klein KA, Nees AV, Noroozian M, Patterson SK, Pinsky RW, Hooi FM, Carson PL (2013) Breast mass characterization using 3-dimensional automated ultrasound as an adjunct to digital breast tomosynthesis: a pilot study. J Ultrasound Med 32(1):93–104PubMedCentralPubMedGoogle Scholar
  28. 28.
    Prosch H, Halbwachs C, Strobl C, Reisner LM, Hondl M, Weber M, Mostbeck GH (2011) Automated breast ultrasound vs. handheld ultrasound: BI-RADS classification, duration of the examination and patient comfort. Ultraschall Med 32(5):504–510. doi: 10.1055/s-0031-1273414 CrossRefPubMedGoogle Scholar
  29. 29.
    Shin HJ, Kim HH, Cha JH, Park JH, Lee KE, Kim JH (2011) Automated ultrasound of the breast for diagnosis: interobserver agreement on lesion detection and characterization. AJR Am J Roentgenol 197(3):747–754. doi: 10.2214/AJR.10.5841 CrossRefPubMedGoogle Scholar
  30. 30.
    Wang ZL, Xw JH, Li JL, Huang Y, Tang J (2012) Comparison of automated breast volume scanning to hand-held ultrasound and mammography. Radiol Med 117(8):1287–1293. doi: 10.1007/s11547-012-0836-4 CrossRefPubMedGoogle Scholar
  31. 31.
    Wenkel E, Heckmann M, Heinrich M, Schwab SA, Uder M, Schulz-Wendtland R, Bautz WA, Janka R (2008) Automated breast ultrasound: lesion detection and BI-RADS classification -a pilot study. Roefo 180(9):804–808. doi: 10.1055/s-2008-1027563 CrossRefGoogle Scholar
  32. 32.
    Wojcinski S, Farrokh A, Hille U, Wiskirchen J, Gyapong S, Soliman AA, Degenhardt F, Hillemanns P (2011) The automated breast volume scanner (ABVS): initial experiences in lesion detection compared with conventional handheld B-mode ultrasound: a pilot study of 50 cases. Int J Womens Health 3:337–346. doi: 10.2147/IJWH.S23918 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Zhang Q, Hu B, Li WB (2012) Detection of breast lesions using an automated breast volume scanner system. J Int Med Res 40(1):300–306CrossRefPubMedGoogle Scholar
  34. 34.
    Mendelson E, Baum J, Berg W (2003) Breast imaging reporting and data system: ACR BI-RADS—breast imaging atlas. In: BI-RADS: Ultrasound Reston, American College of Radiology, VAGoogle Scholar
  35. 35.
    Chang JM, Moon WK, Cho N, Park JS, Kim SJ (2011) Radiologists’ performance in the detection of benign and malignant masses with 3D automated breast ultrasound (ABUS). Eur J Radiol 78(1):99–103. doi: 10.1016/j.ejrad.2011.01.074 CrossRefPubMedGoogle Scholar
  36. 36.
    Landis J, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMedGoogle Scholar
  37. 37.
    Kotsianos-Hermle D, Hiltawsky KM, Wirth S, Fischer T, Friese K, Reiser M (2009) Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound. Eur J Radiol 71(1):109–115. doi: 10.1016/j.ejrad.2008.04.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael Golatta
    • 1
  • Christina Baggs
    • 1
  • Mirjam Schweitzer-Martin
    • 1
  • Christoph Domschke
    • 1
  • Sarah Schott
    • 1
  • Aba Harcos
    • 1
  • Alexander Scharf
    • 1
  • Hans Junkermann
    • 1
  • Geraldine Rauch
    • 2
  • Joachim Rom
    • 1
  • Christof Sohn
    • 1
  • Joerg Heil
    • 1
  1. 1.University Breast UnitHeidelbergGermany
  2. 2.Institute of Medical Biometry and InformaticsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations