Archives of Gynecology and Obstetrics

, Volume 291, Issue 2, pp 419–426 | Cite as

Slow-freezing versus vitrification for human ovarian tissue cryopreservation

  • Silke KlockeEmail author
  • Nana Bündgen
  • Frank Köster
  • Ursula Eichenlaub-Ritter
  • Georg Griesinger
Gynecologic Endocrinology and Reproductive Medicine



Ovarian tissue can be cryopreserved prior to chemotherapy using either the slow-freezing or the vitrification method; however, the data on the equality of the procedures are still conflicting. In this study, a comparison of the cryo-damage of human ovarian tissue induced by either vitrification or slow-freezing was performed.


Ovarian tissue from 23 pre-menopausal patients was cryopreserved with either slow-freezing or vitrification. After thawing/warming, the tissue was histologically and immunohistochemically analyzed and cultured in vitro. During tissue culture the estradiol release was assessed.


No significant difference was found in the proportion of high-quality follicles after thawing/warming in the slow-freezing and vitrification group, respectively (72.7 versus 66.7 %, p = 0.733). Estradiol secretion by the ovarian tissue was similar between groups during 18 days in vitro culture (area-under-the-curve 5,411 versus 13,102, p = 0.11). Addition of Sphingosine-1-Phosphate or Activin A to the culture medium did not alter estradiol release in both groups. The proportion of Activated Caspase-3 or ‘Proliferating-Cell-Nuclear-Antigen’ positive follicles at the end of the culture period was similar between slow-freezing and vitrification.


Slow-freezing and vitrification result in similar morphological integrity after cryopreservation, a similar estradiol release in culture, and similar rates of follicular proliferation and apoptosis after culture.


Human Ovarian tissue Cryopreservation Slow-freezing Vitrification 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Agarwal SK, Chang RJ (2007) Fertility management for women with cancer. Cancer Treat Res 138:15–27PubMedCrossRefGoogle Scholar
  2. 2.
    Cvancarova M, Samuelsen SO, Magelssen H, Fossa SD (2009) Reproduction rates after cancer treatment: experience from the Norwegian radium hospital. J Clin Oncol 27(3):334–343PubMedCrossRefGoogle Scholar
  3. 3.
    Jeruss JS, Woodruff TK (2009) Preservation of fertility in patients with cancer. N Engl J Med 360(9):902–911PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Schover LR (2009) Rates of postcancer parenthood. J Clin Oncol 27(3):321–322PubMedCrossRefGoogle Scholar
  5. 5.
    Andersen CY, Rosendahl M, Byskov AG, Loft A, Ottosen C, Dueholm M et al (2008) Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod 23(10):2266–2272PubMedCrossRefGoogle Scholar
  6. 6.
    Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y (2007) Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. Oncologist 12(12):1437–1442PubMedCrossRefGoogle Scholar
  7. 7.
    Dittrich R, Lotz L, Keck G, Hoffmann I, Mueller A, Beckmann MW et al (2012) Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril 97(2):387–390. doi: 10.1016/j.fertnstert.2011.11.047 PubMedCrossRefGoogle Scholar
  8. 8.
    Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J et al (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364(9443):1405–1410PubMedCrossRefGoogle Scholar
  9. 9.
    Ernst E, Bergholdt S, Jorgensen JS, Andersen CY (2010) The first woman to give birth to two children following transplantation of frozen/thawed ovarian tissue. Hum Reprod 25(5):1280–1281PubMedCrossRefGoogle Scholar
  10. 10.
    Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y et al (2005) Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 353(3):318–321PubMedCrossRefGoogle Scholar
  11. 11.
    Silber SJ (2012) Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod 18(2):59–67PubMedCrossRefGoogle Scholar
  12. 12.
    Cao YX, Xing Q, Li L, Cong L, Zhang ZG, Wei ZL et al (2009) Comparison of survival and embryonic development in human oocytes cryopreserved by slow-freezing and vitrification. Fertil Steril 92(4):1306–1311PubMedCrossRefGoogle Scholar
  13. 13.
    Chang CC, Shapiro DB, Bernal DP, Wright G, Kort HI, Nagy ZP (2008) Human oocyte vitrification: in vivo and in vitro maturation outcomes. Reprod Biomed Online 17(5):684–688PubMedCrossRefGoogle Scholar
  14. 14.
    Cobo A, Meseguer M, Remohi J, Pellicer A (2010) Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod 25(9):2239–2246PubMedCrossRefGoogle Scholar
  15. 15.
    Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Kort HI, Vajta G (2010) The efficacy and safety of human oocyte vitrification. Semin Reprod Med 27(6):450–455CrossRefGoogle Scholar
  16. 16.
    Noyes N, Knopman J, Labella P, McCaffrey C, Clark-Williams M, Grifo J (2010) Oocyte cryopreservation outcomes including pre-cryopreservation and post-thaw meiotic spindle evaluation following slow cooling and vitrification of human oocytes. Fertil Steril 94(6):2078–2082PubMedCrossRefGoogle Scholar
  17. 17.
    Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E et al (2010) Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod 25(1):66–73PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Wu J, Zhang L, Wang X (2001) In vitro maturation, fertilization and embryo development after ultrarapid freezing of immature human oocytes. Reproduction 121(3):389–393PubMedCrossRefGoogle Scholar
  19. 19.
    Amorim CA, Curaba M, Van Langendonckt A, Dolmans MM, Donnez J (2011) Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod Biomed Online 23(2):160–186PubMedCrossRefGoogle Scholar
  20. 20.
    Revelli A, Molinari E, Salvagno F, Delle Piane L, Dolfin E, Ochetti S (2012) Oocyte cryostorage to preserve fertility in oncological patients. Obstet Gynecol Int 2012:525896PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K et al (2010) Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 16(4):395–414PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Isachenko V, Lapidus I, Isachenko E, Krivokharchenko A, Kreienberg R, Woriedh M et al (2009) Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological, and molecular biological evaluation. Reproduction 138(2):319–327PubMedCrossRefGoogle Scholar
  23. 23.
    Kagawa N, Silber S, Kuwayama M (2009) Successful vitrification of bovine and human ovarian tissue. Reprod Biomed Online 18(4):568–577PubMedCrossRefGoogle Scholar
  24. 24.
    Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A et al (2009) Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod 24(7):1670–1683PubMedCrossRefGoogle Scholar
  25. 25.
    Rahimi G, Isachenko E, Isachenko V, Sauer H, Wartenberg M, Tawadros S et al (2004) Comparison of necrosis in human ovarian tissue after conventional slow freezing or vitrification and transplantation in ovariectomized SCID mice. Reprod Biomed Online 9(2):187–193PubMedCrossRefGoogle Scholar
  26. 26.
    Ethier JF, Findlay JK (2001) Roles of activin and its signal transduction mechanisms in reproductive tissues. Reproduction 121(5):667–675PubMedCrossRefGoogle Scholar
  27. 27.
    Findlay JK, Drummond AE, Dyson ML, Baillie AJ, Robertson DM, Ethier JF (2002) Recruitment and development of the follicle; the roles of the transforming growth factor-beta superfamily. Mol Cell Endocrinol 191(1):35–43 S0303720702000539 [pii]PubMedCrossRefGoogle Scholar
  28. 28.
    Choi J, Lee B, Lee E, Yoon BK, Choi D (2008) Effect of activin A and insulin-like growth factor-I on in vitro development of preantral follicles isolated from cryopreserved ovarian tissues in the mouse. Cryobiology 57(3):209–215PubMedCrossRefGoogle Scholar
  29. 29.
    Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A et al (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6(10):1109–1114. doi: 10.1038/80442 PubMedCrossRefGoogle Scholar
  30. 30.
    Soleimani R, Heytens E, Oktay K (2011) Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One 6(4):e19475PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hasegawa A, Hamada Y, Mehandjiev T, Koyama K (2004) In vitro growth and maturation as well as fertilization of mouse preantral oocytes from vitrified ovaries. Fertil Steril 81(Suppl 1):824–830. doi: 10.1016/j.fertnstert.2003.08.028 PubMedCrossRefGoogle Scholar
  32. 32.
    Wang Y, Xiao Z, Li L, Fan W, Li SW (2008) Novel needle immersed vitrification: a practical and convenient method with potential advantages in mouse and human ovarian tissue cryopreservation. Hum Reprod 23(10):2256–2265PubMedCrossRefGoogle Scholar
  33. 33.
    Gosden RG, Baird DT, Wade JC, Webb R (1994) Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196 °C. Hum Reprod 9(4):597–603PubMedGoogle Scholar
  34. 34.
    Donnez J, Squifflet J, Van Eyck AS, Demylle D, Jadoul P, Van Langendonckt A et al (2008) Restoration of ovarian function in orthotopically transplanted cryopreserved ovarian tissue: a pilot experience. Reprod Biomed Online 16(5):694–704PubMedCrossRefGoogle Scholar
  35. 35.
    Hovatta O, Silye R, Abir R, Krausz T, Winston RM (1997) Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod 12(5):1032–1036PubMedCrossRefGoogle Scholar
  36. 36.
    Gougeon A (1979) Qualitative changes in medium and large antral follicles in the human ovary during the menstrual cycle. Ann Biol Anim Biochem Biophys 19:1451–1458CrossRefGoogle Scholar
  37. 37.
    Dittrich R, Mueller A, Hoffmann I, Beckmann MW, Maltaris T (2007) Cryopreservation of complex systems: slow freezing has not had its day yet. Rejuv Res 10(1):101–102CrossRefGoogle Scholar
  38. 38.
    Trapphoff T, El Hajj N, Zechner U, Haaf T, Eichenlaub-Ritter U (2010) DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum Reprod 25(12):3025–3042PubMedCrossRefGoogle Scholar
  39. 39.
    Pyne S, Pyne NJ (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349(Pt 2):385–402PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Spiegel S, Kolesnick R (2002) Sphingosine 1-phosphate as a therapeutic agent. Leukemia 16(9):1596–1602PubMedCrossRefGoogle Scholar
  41. 41.
    Suomalainen L, Pentikainen V, Dunkel L (2005) Sphingosine-1-phosphate inhibits nuclear factor kappaB activation and germ cell apoptosis in the human testis independently of its receptors. Am J Pathol 166(3):773–781PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Pangas SA, Jorgez CJ, Tran M, Agno J, Li X, Brown CW et al (2007) Intraovarian activins are required for female fertility. Mol Endocrinol 21(10):2458–2471. doi: 10.1210/me.2007-0146 PubMedCrossRefGoogle Scholar
  43. 43.
    Cossigny DA, Findlay JK, Drummond AE (2012) The effects of FSH and activin A on follicle development in vitro. Reproduction 143(2):221–229PubMedCrossRefGoogle Scholar
  44. 44.
    Telfer EE, McLaughlin M, Ding C, Thong KJ (2008) A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod 23(5):1151–1158PubMedCrossRefGoogle Scholar
  45. 45.
    Ding CC, Thong KJ, Krishna A, Telfer EE (2010) Activin A inhibits activation of human primordial follicles in vitro. J Assist Reprod Genet 27(4):141–147. doi: 10.1007/s10815-010-9395-6 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Kaya H, Desdicioglu R, Sezik M, Ulukaya E, Ozkaya O, Yilmaztepe A et al (2008) Does sphingosine-1-phosphate have a protective effect on cyclophosphamide- and irradiation-induced ovarian damage in the rat model? Fertil Steril 89(3):732–735. doi: 10.1016/j.fertnstert.2007.03.065 PubMedCrossRefGoogle Scholar
  47. 47.
    Hancke K, Walker E, Strauch O, Gobel H, Hanjalic-Beck A, Denschlag D (2009) Ovarian transplantation for fertility preservation in a sheep model: can follicle loss be prevented by antiapoptotic sphingosine-1-phosphate administration? Gynecol Endocrinol 25(12):839–843. doi: 10.3109/09513590903159524 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Silke Klocke
    • 1
    Email author
  • Nana Bündgen
    • 1
  • Frank Köster
    • 1
  • Ursula Eichenlaub-Ritter
    • 2
  • Georg Griesinger
    • 1
  1. 1.Department of Gynecological Endocrinology and Reproductive MedicineUniversity Clinic of Schleswig-HolsteinLübeckGermany
  2. 2.Gene Technology/Microbiology, Faculty of BiologyUniversity of BielefeldBielefeldGermany

Personalised recommendations