Archives of Gynecology and Obstetrics

, Volume 290, Issue 4, pp 749–755 | Cite as

Construction of breast cancer gene regulatory networks and drug target optimization

Gynecologic Oncology

Abstract

Objective

The purpose of this study was to construct the breast cancer gene regulatory networks through the high-throughput techniques and optimize the drug target genes of breast cancer using bioinformatics analysis, and thus accelerate the process of drug development and improve the cure rate of breast cancer.

Methods

The gene expression profile data of breast cancer were downloaded from GEO database and the transcriptional regulation data were obtained from UCSC database. Then we identified the differentially expressed genes (DEGs) by SAM algorithm and built gene regulatory networks by the supervised algorithm SIRENE. Finally, the drug targets of the DEGs with changed regulation relations were optimized based on the CancerResource database.

Results

A total of 584 DEGs were identified and the gene regulatory networks in the normal state and tumorous state were constructed. By comparing the new predicted regulatory relation in cancer state and normal state, the regulatory relation of 18 genes was found to be changed in the two states, showing the possibility to be applied as drug target genes. After the searches in the CancerResources, 7 genes were screened as the drug target genes, such as PFKFB3.

Conclusion

Our present findings shed new light on the molecular mechanism of breast cancer and provide some drug targets which have the potential to be used in clinic for the treatment of breast cancer in future.

Keywords

Breast cancer Differentially expressed gene Gene regulatory network Target gene optimization 

Notes

Conflict of interest

None.

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30PubMedCrossRefGoogle Scholar
  2. 2.
    Levin AO (2013) The impact of reduced ovarian function and its consequences on young women survivors of breast and gynecologic cancer. In: The Ohio State UniversityGoogle Scholar
  3. 3.
    Bleyer A, Welch HG (2012) Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 367(21):1998–2005PubMedCrossRefGoogle Scholar
  4. 4.
    Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62(4):220–241PubMedCrossRefGoogle Scholar
  5. 5.
    Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404PubMedCentralPubMedGoogle Scholar
  6. 6.
    Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378(9805):1812–1823PubMedCrossRefGoogle Scholar
  7. 7.
    Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280PubMedGoogle Scholar
  8. 8.
    Goldhirsch A, Wood W, Coates A, Gelber R, Thürlimann B, Senn H-J (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22(8):1736–1747PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8(5):e1002503PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3(1):140PubMedCentralPubMedGoogle Scholar
  11. 11.
    Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau W-C, Ledoux P, Rudnev D, Lash AE, Fujibuchi W, Edgar R (2005) NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res 33(suppl 1):D562–D566PubMedCentralPubMedGoogle Scholar
  12. 12.
    Pau Ni IB, Zakaria Z, Muhammad R, Abdullah N, Ibrahim N, Aina Emran N, Hisham Abdullah N, Syed Hussain SNA (2010) Gene expression patterns distinguish breast carcinomas from normal breast tissues: the Malaysian context. Pathol Res Pract 206(4):223–228PubMedCrossRefGoogle Scholar
  13. 13.
    Karolchik D, Hinrichs AS, Kent WJ (2011) The UCSC genome browser. Curr Protoc Hum Genet: 18. 16. 11–18. 16. 33Google Scholar
  14. 14.
    Larsson O, Wahlestedt C, Timmons JA (2005) Considerations when using the significance analysis of microarrays (SAM) algorithm. BMC Bioinformatics 6(1):129PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Pac Symp Biocomput. pp 418–429Google Scholar
  16. 16.
    Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    D’haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8):707–726PubMedCrossRefGoogle Scholar
  20. 20.
    Irrthum A, Wehenkel L, Geurts P (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One 5(9):e12776PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    De Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103PubMedCrossRefGoogle Scholar
  22. 22.
    Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ahmed J, Meinel T, Dunkel M, Murgueitio MS, Adams R, Blasse C, Eckert A, Preissner S, Preissner R (2011) CancerResource: a comprehensive database of cancer-relevant proteins and compound interactions supported by experimental knowledge. Nucleic Acids Res 39(suppl 1):D960–D967PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Verdoodt B, Vogt M, Schmitz I, Liffers S-T, Tannapfel A, Mirmohammadsadegh A (2012) Salinomycin induces autophagy in colon and breast cancer cells with concomitant generation of reactive oxygen species. PLoS One 7(9):e44132PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Zhao D-D, Zhu Z-Y, Zhang C-F (2007) Advance in the development of target medicines for treatment of breast cancer. China Trop Med 4:70Google Scholar
  26. 26.
    Bentrem D, Gaiha P, Jordan V (2003) Oestrogens, oestrogen receptors and breast cancer. Eur J Cancer Suppl 1(1):1–12CrossRefGoogle Scholar
  27. 27.
    Tonon G (2008) From oncogene to network addiction: the new frontier of cancer genomics and therapeutics. Future Oncol 4(4):569–577PubMedCrossRefGoogle Scholar
  28. 28.
    Ahmad F, Deris S, Othman N (2012) The inference of breast cancer metastasis through gene regulatory networks. J Biomed Inform 45(2):350–362PubMedCrossRefGoogle Scholar
  29. 29.
    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659PubMedCrossRefGoogle Scholar
  30. 30.
    Fuchs D, Heinold A, Opelz G, Daniel V, Naujokat C (2009) Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun 390(3):743–749PubMedCrossRefGoogle Scholar
  31. 31.
    Demicheli R, Coradini D (2011) Gene regulatory networks: a new conceptual framework to analyse breast cancer behaviour. Ann Oncol 22(6):1259–1265PubMedCrossRefGoogle Scholar
  32. 32.
    Baca-López K, Mayorga M, Hidalgo-Miranda A, Gutiérrez-Nájera N, Hernández-Lemus E (2012) The role of master regulators in the metabolic/transcriptional coupling in breast carcinomas. PLoS One 7(8):e42678PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of OncologyRenmin Hospital of Wuhan UniversityWuchanChina
  2. 2.Department of EmergencyRenmin Hospital of Wuhan UniversityWuchanChina
  3. 3.General Surgery DepartmentXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations